We consider the problem faced by a company that wants to use viral marketing to introduce a new product into a market where a competing product is already being introduced. We assume that consumers will use only one of the two products and will influence their friends in their decision of which product to use. We propose two models for the spread of influence of competing technologies through a social network and consider the influence maximization problem from the follower's perspective. In particular we assume the follower has a fixed budget available that can be used to target a subset of consumers and show that, although it is NP-hard to select the most influential subset to target, it is possible to give an efficient algorithm that is within 63% of optimal.Our computational experiments show that by using knowledge of the social network and the set of consumers targeted by the competitor, the follower may in fact capture a majority of the market by targeting a relatively small set of the right consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.