The present study evaluates the influence of nano MoS2 particles on the wear properties of newly developed TiB2 and Graphite reinforced Aluminium composite. Micro particles of MoS2 are downsized into nano levels using a planetary ball mill. Three different compositions of specimens are fabricated through stir casting, with a constant 10% of weight of TiB2, graphite, and nano MoS2 is kept at varying amounts of 10, 15, and 20%. The dry sliding wear tests are executed by following Taguchi's design of experiment. The wear rate and coefficient of friction are considered as responses, whereas the normal load, sliding distance and the composition of MoS2 are considered as the chief parameters with three levels. The hybridized Taguchi-Grey Relational -Principal Component Analysis mathematical model is implemented to study the effect of wear parameters and inclusion of MoS2 on the wear behavior. Mathematical and experimental results explore the increasing nano MoS2 content reduces the wear rate and coefficient of friction of composites. Analysis of variance results also acknowledge that nano MoS2 content in the composite is a remarkable parameter to impact the tribological property. The hybrid statistical model results explore that the optimum parameter to yield better tribological property are 30 N normal load, 2 km sliding distance and 20 % of MoS2. Worn surfaces are analyzed using scanning electron microscopy to picturize the wear mechanism concerning the varying content of reinforcement.
Titanium alloy-based components are now attracted by the industries with their distinguished properties even though they are difficult to machine. The tooling industries encounter numerous problems in machining these metals like higher tool wear, huge volumes of cutting fluid consumption, and shorter tool life. The objective of this research is to enhance the surface of the cutting tool with carbon nanotube (CNT) deposition to solve the aforementioned difficulties. This research used the plasma-enhanced chemical vapor deposition method to coat CNT on high-speed steel tools. Microstructural investigations were performed using a scanning electron microscope and a Raman spectroscopic technique to ensure the homogenous deposition of CNT. Additionally, scratch testing was also conducted to assess the adhesive strength of the deposited layer to the substrate. Finally, the machining performance of the CNT-coated tool was compared with commercially available diamond-like carbon (DLC) and titanium aluminum nitride (TiAlN)-coated tools. Machining experiments conducted under three distinct cutting levels revealed that the CNT-deposited tool is appropriate for turning more challenging materials. CNT-coated tools showed substantial decreases in cutting tooltip temperature, turning forces, and tool wear compared to DLC and TiAlN-coated tools. In particular, tool life studies conducted under elevated machining circumstances recorded the enhancement in tool life as 96.3% and 26.8% in comparison with TiAlN and DLC, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.