Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation.
Arid riverbed is an important source of Aeolian dust to influence the atmosphere of nearby village or downtown. In general, Aeolian dust pertains to wind activity in the study of geology, environment and meteorology on particle suspension. This field study set the horizontal/vertical sampling system up in order to investigate the Aeolian dust dimensional distribution properties from the riverbed of the Jhuoshuei River. In addition, the study utilized the unmanned aerial vehicle (UAV) imagery to discriminate the covering condition of riverbed. The results revealed that the percentage of riverbed covering conditions, including bare zone, wetlands, green covering and water covering was about 50.1, 15.7, 16.8 and 17.4%, respectively, on January 5 th , 2011. Two Aeolian dust cases from riverbed were measured on November 26 th , 2010 and January 15 th , 2011. First sampling case was under slower wind speed, and the total particulate matter (PM) concentration in vertical sampling was almost decreased with increasing sampling height, however, the phenomena of second case (faster wind speed) was just on the contrary. Besides, Aeolian dust was distributed in a bimodal or a multimodal curve, and the main peak size was above 10 µm. Mode size of suspension particle diameter was increased as the wind speed increased (14.8 µm/ first case; 21.3 µm/ second case). The total mass concentration ratio of south site to source site (one meter height) was about 1:9 in first case and about 1:3 in second case. Comparing with those two cases, the faster the wind is, the shorter the surface roughness height is (3.08 mm/ first case; 1.07 mm/ second case). Besides, as the wind speed increasing, the friction velocity was also increased (0.33 m s -1 / first case; 0.68 m s -1 / second case). Consequently, this study clued the spatial variability of river dust events, which can further aid the site investigating, forecasting and preventing of dust influences.
Cooking oil fumes (CF) coming from night market stalls exhaust contain substantial amounts of air pollutants such as carbonyl compounds that may contribute to outdoor air pollution and may have adverse health effects on the Taiwanese population. Carbonyl emission characteristics depend on several factors, which include but are not limited to, the cooking style and food material being used. The current study evaluated carbonyl compound emissions from two scenarios: a standard kitchen cooking classroom with a stack gas tunnel and night market food stalls. The different cooking styles and food types cooked using a liquefied petroleum gas (LPG) stove, such as grilled chicken with (GCS) and without sauce (GC), mixed barbecue with sauce (MBS), grilled vegetables with sauce (GVS), stir-fried oyster omelet (OM), fried Taiwanese chicken nuggets (FN) in the kitchen cooking classroom, and grilled chicken with (GCS) and without sauce (GC), stir-fried oyster omelet (OM), grilled vegetables with sauce (GVS), and fried steak (FS) in the night market were evaluated for carbonyl carbon emissions. OM from the kitchen classroom and GCS from the night market showed the highest mean total carbonyl compound concentrations (1850 ± 682 ppb and 1840 ppb). Formaldehyde was found to be the most predominant carbonyl compound, with contribution percentages ranging from 70.9-99.58% of the total carbonyl emission factors in CFs. Grilled vegetables with sauce had the highest emission factor magnitude of 274 µg kg -1 wt. Factors such as the addition of sauce and grilling were also observed to increase carbonyl compound emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.