An improved echo planar high-speed imaging technique using spiral scan is presented and experimental advantages are discussed. This proposed spiral-scan echo planar imaging (SEPI) technique employs two linearly increasing sinusoidal gradient fields, which results in a spiral trajectory in the spatial frequency domain (k-domain) that covers the entire frequency domain uniformly. The advantages of the method are: 1) circularly symmetric T2 weighting, resulting in a circularly symmetric point spread function in the image domain; 2) elimination of discontinuities in gradient waveforms which in turn will reduce initial transient as well as steady-state distortions; and 3) effective rapid spiral-scan from dc to high frequency in a continuous fashion, which ensures multiple pulsing with interlacing for further resolution improvement without T2 decay image degradation. Some preliminary experimental results will be presented and further possible improvements suggested.
Capillary flow or microscopic random directional coherent flow as a model of perfusion is investigated both theoretically and experimentally. In the model, we assumed that molecular motion within a finite resolvable volume element (voxel) is a superposition of flow of randomly oriented small capillaries. In such a case, the observed signal from the capillary flow within a voxel will be attenuated in signal amplitude without any change in phase. Although this attenuation effect is similar to the diffusion phenomenon, it differs basically in the following aspects: since the motion in each capillary segment is coherent, phase cancellation occurs at even echoes due to spin rephasing, while the diffusion phenomenon is a purely random Brownian motion of the thermally agitated molecules, changing both in direction and speed during the measurement period. Because of the random character of diffusion, even-echo rephasing cannot be observed. Thus capillary flow or perfusionlike microscopic flow can be measured based on the above distinct flow characteristics, i.e., signal restoration at even echoes versus signal amplitude attenuation at odd echoes. By applying a suitable mathematical algorithm, information on the capillary flow alone can be extracted from the two separate distinct measurements, i.e., one with a single echo and the other with a double echo. Both a theoretical calculation of the capillary flow, as well as the experimental results with a human volunteer by a 0.6-T nuclear magnetic resonance imager, are presented.
Nuclear magnetic resonance (NMR) microscopy with 4-microns resolution, a step closer to the 1-micron resolution with which in vivo cellular imaging would be possible is described. An analysis of the ultimate resolution and voxel size dependent signal-to-noise ratio (SNR) in NMR microscopy is presented and experimentally verified. For microscopic scale objects (less than 1-mm diameter), the SNR based on the geometrical scale factor(s) is found to be proportional to sn where n less than 2, rather than n = 3 as previously supposed. This comes about because of a drastic reduction in sample noise coupled with a significant sensitivity gain realized in small diameter radiofrequency coils. A new pulse sequence which reduces both diffusion dependent resolution degradation and signal attenuation is presented. The selection of optimal bandwidth and acquisition time for maximal SNR is discussed. Experimental results obtained on both a 2.0-T whole-body system and a 7.0-T small bore system adapted for microscopy indicate the potentials of 4-microns resolution microscopy with the existing magnets.
Background:Helicobacter pylori are major carcinogen of gastric cancer, but the associations among gastric cancer, H. pylori infection status, and alcohol consumption are not fully described. This study aimed to clarify how H. pylori infection status affects the association between alcohol consumption and gastric cancer risk.Methods:We selected 949 case–cohort participants from the 18 863 Korean Multi-center Cancer Cohort (KMCC) populations. Gastric cancer incidence inside and outside of the subcohort were 12 and 254 cases, respectively. Seropositivities for CagA, VacA, and H. pylori infection were determined by performing immunoblot assays. Weighted Cox regression models were used to calculate hazard ratios and 95% confidence intervals (CIs).Results:Relative to non-drinking, heavy drinking (⩾7 times a week), and binge drinking (⩾55 g alcohol intake per occasion) showed a 3.48-fold (95% CI, 1.13–10.73) and 3.27-fold (95% CI, 1.01–10.56) higher risk in subjects not previously infected by H. pylori. There was no significant association between drinking pattern and gastric cancer risk in H. pylori IgG seropositive subjects. An increased risk for gastric cancer in heavy- and binge-drinking subjects were also present in subjects not infected by CagA- or VacA-secreting H. pylori.Conclusions:Heavy and binge alcohol consumption is an important risk factor related to an increasing incidence of gastric cancer in a population not infected by H. pylori.
Reduction of eddy currents by a temporal compensation of the input current waveform to the gradient coil is studied with an analytic solution. The technique is the inverse filtering of the eddy-current affected field response, which is calculated from the diffusion equation. The limitation of the temporal compensation due to the spatially variant eddy currents is also investigated for whole-body diagnostic imaging systems and small-bore nuclear magnetic resonance (NMR) microscopy systems. Within a limited imaging volume of less than 60% of the gradient coil diameter, most of eddy-current problems can be solved by the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.