Concentrations of metabolites and immunoreactive insulin (IRI) and activities of enzymes related to energy metabolism were measured in plasma of Korean and Japanese beef cattle, which were raised by the indoor feeding system programmed to feed larger amount of roughage in their growing periods and larger amount of concentrate diet in their finishing periods (Japanese feeding system), and grazing New Zealand beef cattle. By the Japanese beef grading system, Korean and Japanese beef cattle showed high beef quality score, average grade 3.3 and 3.6, respectively. The plasma free fatty acid and lactate concentrations and lactate dehydrogenase (LDH), malate dehydrogenase (MDH) and aspartate aminotransferase (AST) activities in Korean beef cattle were significantly higher than those in Japanese beef cattle. The plasma lactate concentration in Korean beef cattle was 8.40 mmol/l, which was similar to the values observed in lactic acidosis. The higher activities of plasma LDH, MDH and AST may indicate slight liver damage by slightly acidotic conditions in Korean beef cattle. New Zealand beef cattle fed on pasture which they harvest by grazing showed significantly lower plasma glucose, cholesterol, lactate and IRI concentrations and enzyme activities than those in Korean and Japanese beef cattle fed on larger amount of concentrate diets. Plasma metabolite concentrations and energy metabolism-related enzyme activities may be good indicators for evaluating metabolic conditions of beef cattle raised by different feeding systems.
Sixteen ruminally cannulated Korean native steers (Hanwoo; 626.2 ±47.72 kg) were used to investigate the effects of polyclonal antibodies against abdominal (AAb) and subcutaneous adipocyte membrane proteins (SAb) on ruminal fermentation patterns and blood metabolites. The body weight (BW) of Hanwoo was decreased 2-weeks after AAb and SAb injection, BW reduction was also observed in control and non-immunized serum groups, indicating that stress induced by other factors (e.g. blood sampling etc.) rather than antibodies injection may affect the BW reduction. Antibodies treatment did not affect (P > 0.05) rumen pH, volatile fatty acids and ammonia-N concentration. The ranges were similar with typical ranges of those in Hanwoo. Compared with control, blood urea N concentration was decreased in AAb group and increased (P < 0.05) in SAb group before antibodies treatment. However, none of the groups were significantly (P > 0.05) affected at 2-or 4-weeks after the treatment. Concentration of plasma glucose in the non-immunized serum group was significantly higher (P < 0.05) than the other groups at 0-week after treatment. However, antibodies treatment did not affect the concentration of plasma glucose. Concentration of plasma triglyceride showed no difference (P > 0.05) between the groups and ranged from 11.4 to 19.9 mg/dl, which is the perfect range of plasma triglyceride of Hanwoo fed concentrate based diets. In conclusion, these results may indicate that the present AAb and SAb have safety in nutritional physiological metabolism in Hanwoo. Further study on in vivo fat reduction of the antibodies against abdominal and subcutaneous adipocytes PMPs of Hanwoo is required for inedible fat-reduced high quality beef production.
Intercellular signalling communication between adipose and muscle tissue has been investigated. To test the effect of muscle cells on adipogenic gene expression, we utilised an in vitro co-culture system, in which fat (3T3-L1) and muscle (L-6) cells were physically separated but chemically exposed each other via insert with 0.4 µm porous membrane. When 3T3-L1 and L-6 cells reached at 80 and 40% confluence, respectively in separate wells, L-6 cells grown in insert were transferred onto 6-well plates where 3T3-L1 cells were being grown. When both cells were fully differentiated in co-culture plates, morphology of 3T3-L1 was examined by staining with Oil-red-O. Activity of glycerol-3-phosphate dehydrogenase (GPDH) and adipogenic gene expression including lipoprotein lipase (LPL), adipsin, GPDH, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα) were analysed. The presence of muscle cells during preadipocyte differentiation inhibited (P < 0.05) lipogenesis by suppressing lipogenic gene expression including LPL, adipsin and GPDH. Furthermore, GPDH activity was also decreased (P < 0.05) in 3T3-L1 cells by the presence of L-6 cells. These results suggest that presence of muscle cells suppresses adipogenic differentiation by inhibiting the adipogenic gene expression and GPDH activity in the muscle and fat cell co-culture system.
The aim of the present study was to develop polyclonal antibodies to regional inedible adipocytes of pigs and investigate the effect of these antibodies on adipocytes in vitro. As antigens, abdominal and subcutaneous adipocyte PMPs from pigs were injected into sheep 3 times per 3 wk intervals for passive immunization, and non-immunized serum, antisera against abodominal (AAb) or subcutaneous adipocyte PMPs (SAb) were collected before and after the injections. Titers of the antisera obtained from sheep and their cross-reactivities with the heart, kidney, liver, lung, muscle, and spleen of pig were determined by ELISA. Isolation and culture of abdominal and subcutaneous adipocytes from pigs were performed to analyze LDH concentration. At a 1:1,000 dilution, little antibody reactivity was observed for non-immunized serum whereas both AAb and SAb had relatively strong reactivity up to a dilution of 1:16,000. These findings may indicate that strong antibodies against adipocyte PMPs can be developed using an immunological approach. Extremely low reactivity of AAb and SAb was detected with the PMPs of the organs. Both antisera most strongly reacted with each adipocyte PMPs and showed statistically (p<0.05) higher cross-reactivities compared with the non-immunized serum. In conclusion, these results may indicate that the present polyclonal antibodies against regional inedible adipocyte PMPs are well developed and are safe against cross-reactivities with the organs of pigs. Further studies on the in vivo nutritional safety and fat reduction of these antibodies in pigs will be required fat-reduced high quality pork production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.