Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans.
BackgroundAutologous platelet-rich plasma has attracted attention in various medical fields recently, including orthopedic, plastic, and dental surgeries and dermatology for its wound healing ability. Further, it has been used clinically in mesotherapy for skin rejuvenation.ObjectiveIn this study, the effects of activated platelet-rich plasma (aPRP) and activated platelet-poor plasma (aPPP) have been investigated on the remodelling of the extracellular matrix, a process that requires activation of dermal fibroblasts, which is essential for rejuvenation of aged skin.MethodsPlatelet-rich plasma (PRP) and platelet-poor plasma (PPP) were prepared using a double-spin method and then activated with thrombin and calcium chloride. The proliferative effects of aPRP and aPPP were measured by [3H]thymidine incorporation assay, and their effects on matrix protein synthesis were assessed by quantifying levels of procollagen type I carboxy-terminal peptide (PIP) by enzyme-linked immunosorbent assay (ELISA). The production of collagen and matrix metalloproteinases (MMP) was studied by Western blotting and reverse transcriptase-polymerase chain reaction.ResultsPlatelet numbers in PRP increased to 9.4-fold over baseline values. aPRP and aPPP both stimulated cell proliferation, with peak proliferation occurring in cells grown in 5% aPRP. Levels of PIP were highest in cells grown in the presence of 5% aPRP. Additionally, aPRP and aPPP increased the expression of type I collagen, MMP-1 protein, and mRNA in human dermal fibroblasts.ConclusionaPRP and aPPP promote tissue remodelling in aged skin and may be used as adjuvant treatment to lasers for skin rejuvenation in cosmetic dermatology.
Although many hypo-pigmenting agents are currently available, the demand for novel whitening agents is increasing, in part due to the weak effectiveness and unwanted side effects of currently available compounds. To screen for novel hypo-pigmenting agents, many methodologies such as cell culture and enzymatic assays are routinely used. However, these models have disadvantages in terms of physiological and economic relevance. In this study, we validated zebrafish as a whole-animal model for phenotype-based screening of melanogenic inhibitors or stimulators. We used both the well-known melanogenic inhibitors (1-phenyl-2-thiourea, arbutin, kojic acid, 2-mercaptobenzothiazole) and newly developed small molecule compounds (haginin, YT16i). All the tested compounds produced inhibitory effects on the pigmentation of zebrafish, most likely due to their inhibitory potential on tyrosinase activity. In simultaneous in vivo toxicity tests, a newly developed melanogenic inhibitor YT16i showed massive abnormalities in terms of deformed morphologies and cardiac function. Together, these results provide a rationale in screening and evaluating the putative melanogenic regulatory compounds. We suggest that the zebrafish system is a novel alternative to mammalian models, with several advantages including the rapidity, cost-effectiveness, and physiological relevance.
The scaffolding adaptor protein p62/SQSTM1 (p62) has been shown to be an autophagy receptor that acts as a link between the ubiquitination and autophagy machineries. However, the roles of autophagy and p62 in human keratinocytes are not well understood. In this study, we show that keratinocyte autophagy negatively regulates p62 expression, which is essential for the prevention of excessive inflammation and the induction of cathelicidin in human keratinocytes. Stimulation of TLR2/6 or TLR4 in primary human keratinocytes robustly activated autophagy pathways and up-regulated p62 expression through induction of NADPH oxidases 2 and 4 and the generation of reactive oxygen species. MyD88 and TNFR-associated factor 6, key signaling molecules that mediate TLR activation, played an essential role in the induction of autophagy and p62 expression. Additionally, blockade of autophagy significantly increased the generation of inflammatory cytokines and expression of p62 in primary human keratinocytes. Notably, silencing hp62 through RNA interference resulted in a significant decrease in NF-κB activation, inflammatory cytokine production, cathelicidin expression, and cell proliferation (as well as cyclin D1 expression) in keratinocytes. Epidermal expression of p62 was further found to be significantly higher in psoriatic skin than in skin affected by atopic dermatitis or from healthy controls. Collectively, our data provide new insights into the roles of autophagy and p62 in controlling cutaneous inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.