Hierarchical classification is a challenging problem where the class labels are organized in a predefined hierarchy. One primary challenge in hierarchical classification is the small training set issue of the local module. The local classifiers in the previous hierarchical classification approaches are prone to over-fitting, which becomes a major bottleneck of hierarchical classification. Fortunately, the labels in the local module are correlated, and the siblings of the true label can provide additional supervision information for the instance. This paper proposes a novel method to deal with the small training set issue. The key idea of the method is to represent the correlation among the labels by the label distribution. It generates a label distribution that contains the supervision information of each label for the given instance, and then learns a mapping from the instance to the label distribution. Experimental results on several hierarchical classification datasets show that our method significantly outperforms other state-of-theart hierarchical classification approaches.
In this paper, we tackle the domain adaptive object detection problem, where the main challenge lies in significant domain gaps between source and target domains. Previous work seeks to plainly align image-level and instance-level shifts to eventually minimize the domain discrepancy. However, they still overlook to match crucial image regions and important instances across domains, which will strongly affect domain shift mitigation. In this work, we propose a simple but effective categorical regularization framework for alleviating this issue. It can be applied as a plug-and-play component on a series of Domain Adaptive Faster R-CNN methods which are prominent for dealing with domain adaptive detection. Specifically, by integrating an image-level multi-label classifier upon the detection backbone, we can obtain the sparse but crucial image regions corresponding to categorical information, thanks to the weakly localization ability of the classification manner. Meanwhile, at the instance level, we leverage the categorical consistency between image-level predictions (by the classifier) and instance-level predictions (by the detection head) as a regularization factor to automatically hunt for the hard aligned instances of target domains. Extensive experiments of various domain shift scenarios show that our method obtains a significant performance gain over original Domain Adaptive Faster R-CNN detectors. Furthermore, qualitative visualization and analyses can demonstrate the ability of our method for attending on the key regions/instances targeting on domain adaptation. Our code is open-source and available at https: //github.com/Megvii-Nanjing/CR-DA-DET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.