To evaluate the influence of low temperatures on the proliferation of neural stem cells (NSCs) and the regulation of their signaling pathways after brain trauma, we examined changes in the expression levels of specific miRNAs and their target genes. We also evaluated NSC proliferation in the hippocampus after brain trauma under low-temperature conditions. We found that the expression profile of miRNAs in the hippocampus after trauma changed at both normal and low temperatures, and the expression of miR-34a decreased significantly lower in rats exposed to low temperatures. There was significant proliferation of endogenous NSCs in the hippocampus after brain trauma at both temperatures, but NSC proliferation was slower at low temperatures. In addition, the expression of Notch1 significantly increased in the hippocampus after brain trauma at both temperatures. However, at low temperatures, the degree of up-regulation of Notch signaling molecules was significantly lower. We conclude that low-temperature environments can inhibit the proliferation of endogenous NSCs in the hippocampus, possibly by alleviating the effects of miR-34a down-regulation and Notch signaling up-regulation induced by traumatic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.