Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells.
In order to detect scale-dependent interfacial evolution of metallic heterostructure during the deposition at room temperature, Ni/Al-typed nanomultilayers were prepared as a function of the periodicity and Ni:Al modulated ratio. Combined with X-ray diffraction, real-time plate curvature measurements by multi-beam optical stress sensor (MOSS) were employed to study the stress buildup so as to speculate interfacial characteristics during the growth process. Results show that with anisotropic nanocrystalline structure within the sub-layers, the multilayers possess asymmetrical interfaces, which is a result of dissymmetrical diffusion of Ni to Al lattice near the interface. Specially, for the smallest periodicity with the lowest Ni:Al ratio, above asymmetric intermixing behaviors turns to be aggravated by a promotion effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.