This study examines the effect of the complementarity between the variable generation resources (VGRs) and the load on the flexibility of the power system. The complementarity may change the ramping capability requirement, and thereby, the flexibility. This effect is quantified using a flexibility index called the ramping capability shortage expectation (RSE). The flexibility is evaluated for different VGR mix scenarios under the same VGR penetration level, and an optimal VGR mix (i.e., one that maximizes flexibility) is obtained. The effect of the complementarity of the wind and PV outputs on the flexibility is investigated for the peak-load day of 2016 for the Korean power system. The result shows that the RSE value for the optimal VGR mix scenario is 6.95% larger than that for the original mix scenario.
Featured Application: This study presents a method for separating the variability and uncertainty in a power system, and determining which is more influential in terms of flexibility, based on the flexibility index, named the ramping capability shortage probability (RSP). A process of scenario generation and sensitivity analysis is also proposed, and applied to a modified IEEE-RTS-96. The proposed method can evaluate the individual effect of variability and uncertainty and effectively provide the system operator with information that will enable more efficient operation and planning of a power system.
Abstract:This study investigates the impact of variability and uncertainty on the flexibility of a power system. The variability and uncertainty make it harder to maintain the balance between load and generation. However, most existing studies on flexibility evaluation have not distinguished between the effects of variability and uncertainty. The countermeasures to address variability and uncertainty differ; thus, applying strategies individually tailored to variability and uncertainty is helpful for more efficient operation and planning of a power system. The first contribution of this study is in separating the variability and uncertainty, and determining which is more influential in terms of flexibility in specific system situations. A flexibility index, named the ramping capability shortage probability (RSP), is used to quantify the extent to which the variability and uncertainty affect the flexibility. The second contribution is to generate various scenarios for variability and uncertainty based on a modified IEEE-RTS-96, to evaluate the flexibility. The penetration level of renewable energy resources is kept the same in each scenario. The results of a sensitivity analysis show that variability is more effective than uncertainty for high and medium net loads.
This paper proposes an index called net load carrying capability (NLCC) to evaluate the contribution of a generating unit to the flexibility of a power system. NLCC is defined as the amount by which the load can be increased when a generating unit is added to the system, while still maintaining the flexibility of the system. This index is based on the flexibility index termed ramping capability shortage expectation (RSE), which has been used to quantify the risk associated with system flexibility. This paper argues that NLCC is more effective than effective load carrying capability (ELCC) in quantifying the contribution of the generating unit to flexibility. This is explained using an illustrative example. A case study has been performed with a modified IEEE-RTS-96 to confirm the applicability of the NLCC index. The simulation results demonstrate the effect of operating conditions such as operating point and ramp rate on NLCC, and show which kind of unit is more helpful in terms of flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.