Recent technical advancements in neural engineering allow for precise recording and control of neural circuits simultaneously, opening up new opportunities for closed-loop neural control. In this work, a rapid spike sorting system was developed based on template matching to rapidly calculate instantaneous firing rates for each neuron in a multi-unit extracellular recording setting. Cluster templates were first generated by a desktop computer using a non-parameter spike sorting algorithm (Super-paramagnetic clustering) and then transferred to a field-programmable gate array digital circuit for rapid sorting through template matching. Two different matching techniques–Euclidean distance (ED) and correlational matching (CM)–were compared for the accuracy of sorting and the performance of calculating firing rates. The performance of the system was first verified using publicly available artificial data and was further confirmed with pre-recorded neural spikes from an anesthetized Mongolian gerbil. Real-time recording and sorting from an awake mouse were also conducted to confirm the system performance in a typical behavioral neuroscience experimental setting. Experimental results indicated that high sorting accuracies were achieved for both template-matching methods, but CM can better handle spikes with non-Gaussian spike distributions, making it more robust for in vivo recording. The technique was also compared to several other off-line spike sorting algorithms and the results indicated that the sorting accuracy is comparable but sorting time is significantly shorter than these other techniques. A low sorting latency of under 2 ms and a maximum spike sorting rate of 941 spikes/second have been achieved with our hybrid hardware/software system. The low sorting latency and fast sorting rate allow future system developments of neural circuit modulation through analyzing neural activities in real-time.
The ability to record and to control action potential firing in neuronal circuits of the brain is critical to understand how the brain functions on the cellular and network levels. Recent development of optogenetic proteins allows direct stimulation or inhibition of action potential firing of neurons upon optical illumination. In this paper, we combined a low-noise and high input impedance (or low input capacitance) neural recording amplifier, and a high current laser/LED driver in a monolithic integrated circuit (IC) for simultaneous neural recording and optogenetic neural control. The low input capacitance of the amplifier (9.7 pF) was achieved through adding a dedicated unity gain input stage optimized for high impedance metal electrodes. The input referred noise of the amplifier was measured to be 4.57 µVrms, which is lower than the estimated thermal noise of the metal electrode. Thus, action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of ~6.6. The LED/laser current driver delivers a maximum current of 330 mA to generate adequate light for optogenetic control. We experimentally tested the functionality of the IC with an anesthetized Mongolian gerbil and recorded auditory stimulated action potentials from the inferior colliculus. Furthermore, we showed that spontaneous firing of 5th (trigeminal) nerve fibers was inhibited using the optogenetic protein Halorhodopsin. A noise model was also derived including the equivalent electronic components of the metal electrode and the high current driver to guide the design.
Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.
Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen-Wang Monte Carlo approximation technique to significantly reduce the search space for reasonable clustering. However, Swendsen-Wang approximation is a Markov process which limits the conventional superparamagnetic technique to process data clustering in a sequential manner. Here the authors propose a parallel approach to replace the conventional appropriation to allow the algorithm to perform clustering in parallel. One synthetic and one open-source dataset were used to validate the accuracy of this parallel approach in which comparable clustering results were obtained as compared to the conventional implementation. The parallel method has an increase of clustering speed at least 8.7 times over the conventional approach, and the larger the sample size, the more increase in speed was observed. This can be explained by the higher degree of parallelism utilised for the increased data points. In addition, a hardware architecture was proposed to implement the parallel superparamagnetic algorithm using digital electronic technologies suitable for rapid or real-time neural spike sorting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.