Through years of development, the triboelectric nanogenerator (TENG) has been demonstrated as a burgeoning efficient energy harvester. Plenty of efforts have been devoted to further improving the electric output performance through material/surface optimization, ion implantation or the external electric circuit. However, all these methods cannot break through the fundamental limitation brought by the inevitable electrical breakdown effect, and thus the output energy density is restricted. Here, a method for enhancing the threshold output energy density of TENGs is proposed by suppressing the breakdown effects in the high-pressure gas environment. With that, the output energy density of the contact-separation mode TENG can be increased by over 25 times in 10 atm than that in the atmosphere, and that of the freestanding sliding TENG can also achieve over 5 times increase in 6 atm. This research demonstrates the excellent suppression effect of the electric breakdown brought by the high-pressure gas environment, which may provide a practical and effective technological route to promote the output performance of TENGs.
As a clean, sustainable energy source, sound can carry a wealth of information and play a huge role in the Internet of Things era. In recent years, triboelectric acoustic sensors have received increasing attention due to the advantages of self-power supply and high sensitivity. However, the triboelectric charge is susceptible to ambient humidity, which reduces the reliability of the sensor and limits the application scenarios significantly. In this paper, a highly moisture-resistant fluorinated polyimide composited with an amorphous fluoropolymer film was prepared. The charge injection performance, triboelectric performance, and moisture resistance of the composite film were investigated. In addition, we developed a self-powered, highly sensitive, and moisture-resistant porous-structure acoustic sensor based on contact electrification. The detection characteristics of the acoustic sensor are also obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.