The mitigation of gap between technology and it's applicability in the oil and gas industry has led to a rapid development of deepwater resources. Historically, subsea wells have good track records. However, an ever increasing water depths and harsher environments being encountered are currently posing challenges to subsea production. Complex subsea systems are now being deployed in ways rarely encountered in previous development schemes. These increasingly complex systems present a number of technical challenges. This study presents the challenges in subsea production systems, considering the technical and safety issues in design and installation associated with current development modality.
The requirement of design of High-Pressure/High-Temperature(HP/HT) pipelines on an seabed increases in recent years. The need of research on the analysis method to improve the design capacity is increasing. The purpose of this study is the development of the analysis method of thermal buckling of subsea pipeline structures. The analysis method of thermal buckling was established by using the commercial FEM code(ABAQUS) which shows the outstanding performance in non-linear static FE analysis. The developed method has been applied to the installation of subsea pipeline on the offshore project. For a validation, the comparative study has been carried out. This application to offshore project demonstrates the superiority of the analysis method of thermal buckling of subsea pipeline structures and testifies the application to detail design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.