The transcription factor GATA-3 is expressed in T helper 2 (TH2) but not TH1 cells and plays a critical role in TH2 differentiation and allergic airway inflammation in vivo. Mice that lack the p50 subunit of nuclear factor kappa B (NF-kappa B) are unable to mount airway eosinophilic inflammation. We show here that this is not due to defects in TH2 cell recruitment but due to the inability of the p50-/- mice to produce interleukin 4 (IL-4), IL-5 and IL-13: cytokines that play distinct roles in asthma pathogenesis. CD4+ T cells from p50-/- mice failed to induce Gata3 expression under TH2-differentiating conditions but showed unimpaired T-bet expression and interferon gamma (IFN-gamma) production under TH1-differentiating conditions. Inhibition of NF-kappa B activity prevented GATA-3 expression and TH2 cytokine production in developing, but not committed, TH2 cells. Our studies provide a molecular basis for the need for both T cell receptor and cytokine signaling for GATA-3 expression and, in turn, TH2 differentiation.
cAMP is an important second messenger with immunomodulatory properties. Elevation of intracellular cAMP in T cells, induced by agents such as IL-1α or PGs, inhibits T cell activation. In effector T cells, an increase in the level of intracellular cAMP inhibits cytokine production in Th1 cells but stimulates cytokine production in Th2 cells. Here we report that cAMP-induced effects in Th2 cells occur independently of the protein kinase A pathway, which is the major mediator of cAMP-induced signaling events in most cell types. Instead, cAMP stimulates activation of p38 mitogen-activated protein kinase in Th2 cells. This appears to be a Th2-selective event because cAMP barely increased p38 phosphorylation in Th1 cells. We show that in Th2 cells, cAMP promotes the production of both IL-5 and IL-13, which play distinct but critical roles in asthma pathogenesis. Our data also show that cAMP causes increased phosphorylation of the transcription factor GATA-3, which we have shown is a critical regulator of Th2 cytokine gene expression and, in turn, of airway inflammation in mice. Thus, Th2-specific GATA-3 expression and p38 mitogen-activated protein kinase activation together provide a molecular basis for the differential effects of cAMP in the two T helper cell subsets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.