Ascorbate treatment 30 min prior to sodium dichromate (20 or 30 mg/kg, s.c.) shows higher potency than that of glutathione (GSH) in protecting against both the metabolic disturbance and nephrotoxicity induced by dichromate. However, ascorbate treatment after 2 h of dichromate intoxication had no effect on dichromate-induced blood urea nitrogen (BUN) elevation 3 days after intoxication. In contrast, dichromate-induced glucosuria, which reached maximum levels at 3 days after treatment, was significantly decreased by GSH or N-acetyl cysteine (NAC) treatment, even if its administration was after 24 h of dichromate intoxication. Pretreatment with GSH depletors such as diethyl maleate (DEM) and buthionine sulfoximine (BSO) had no effect on dichromate-induced nephrotoxicity. GSH levels in the liver and kidney were not affected at 3 h after dichromate treatment. However, dichromate significantly increased tissue GSH levels with a marked increase in liver per kidney GSH ratio at 24 h after treatment, if food was withheld subsequent to dichromate treatment, indicating that GSH biosynthesis resulted from the accelerated protein breakdown. These results suggest that GSH-mediated dichromate reduction is not a kinetically favorable pathway in vivo; however, GSH plays an important role in protection against dichromate-induced nephrotoxicity. In addition, the cellular metabolism of dichromate in the early period after treatment is important in the pathogenesis of its nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.