Periventricular leucomalacia has long been investigated as a leading cause of motor and cognitive dysfunction in patients with spastic diplegic cerebral palsy. However, patients with periventricular leucomalacia on conventional magnetic resonance imaging do not always have motor dysfunction and preterm children without neurological abnormalities may have periventricular leucomalacia. In addition, it is uncertain whether descending motor tract or overlying cortical injury is related to motor impairment. To investigate the relationship between motor pathway injury and motor impairment, we conducted voxelwise correlation analysis using tract-based spatial statistics of white matter diffusion anisotropy and voxel-based-morphometry of grey matter injury in patients with periventricular leucomalacia and spastic diplegia (n = 43, mean 12.86 ± 4.79 years, median 12 years). We also evaluated motor cortical and thalamocortical connectivity at resting state in 11 patients using functional magnetic resonance imaging. The functional connectivity results of patients with spastic diplegic cerebral palsy were compared with those of age-matched normal controls. Since γ-aminobutyric acid(A) receptors play an important role in the remodelling process, we measured neuronal γ-aminobutyric acid(A) receptor binding potential with dynamic positron emission tomography scans (n = 27) and compared the binding potential map of the patient group with controls (n = 20). In the current study, white matter volume reduction did not show significant correlation with motor dysfunction. Although fractional anisotropy within most of the major white matter tracts were significantly lower than that of age-matched healthy controls (P < 0.05, family wise error corrected), fractional anisotropy mainly within the bilateral corticospinal tracts and posterior body and isthmus of the corpus callosum showed more significant correlation with motor dysfunction (P < 0.03) than thalamocortical pathways (P < 0.05, family-wise error corrected). Cortical volume of the pre- and post-central gyri and the paracentral lobule tended to be negatively correlated with motor function. The motor cortical connectivity was diminished mainly within the bilateral somatosensory cortex, paracentral lobule, cingulate motor area and visual cortex in the patient group. Thalamovisual connectivity was not diminished despite severe optic radiation injury. γ-Aminobutyric acid(A) receptor binding potential was focally increased within the lower extremity homunculus, cingulate cortex, visual cortex and cerebellum in the patient group (P < 0.05, false discovery rate corrected). In conclusion, descending motor tract injury along with overlying cortical volume reduction and reduced functional connectivity appears to be a leading pathophysiological mechanism of motor dysfunction in patients with periventricular leucomalacia. Increased regional γ-aminobutyric acid(A) receptor binding potential appears to result from a compensatory plasticity response after prenatal brain injury.
This study was designed to determine the effectiveness of electrical stimulation over the trunk in improving sitting balance in young children with spastic diplegic cerebral palsy who displayed poor trunk control. The subjects ranged in age from 8 to 16 months and were randomly assigned to two groups. Both group had physical therapy for 6 weeks. Electrical stimulation (ES) group had additional electrical stimulation over the abdomen and posterior back muscles. Radiographic studies were carried out on the whole spine while they were sitting before and after treatment. Kyphotic angle, Cobb's angle and lumbo-sacral angle were measured. Additionally, sitting score-Gross Motor Function Measure (GMFM) was also evaluated. There was no difference of these values at initial evaluation between the two groups. Following 6 weeks of intensive therapy, the changes of kyphotic angle and sitting score-GMFM were significantly higher in ES group statistically when compared with those of the control group. The Cobb's angle following treatment was improved in ES group, but not statistically compared with that of control group. This study suggests that electrical stimulation over the trunk become a beneficial therapeutic technique in improving the sitting posture and trunk control in young children with spastic diplegic cerebral palsy.
In conclusion, the clinical picture of HFS after MVD improves with time, and abnormal muscle response can be used as a prognostic indicator for the resolution of HFS during the follow-up period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.