Superoxide produced by the phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is essential for host defense. Enzyme activation requires translocation of p67phox, p47phox, and Rac-GTP to flavocytochrome b 558 in phagocyte membranes. To examine the regulation of phagocytosis-induced superoxide production, flavocytochrome b558, p47phox, p67phox, and the FcγIIA receptor were expressed from stable transgenes in COS7 cells. The resulting COSphoxFcγR cells produce high levels of superoxide when stimulated with phorbol ester and efficiently ingest immunoglobulin (Ig)G-coated erythrocytes, but phagocytosis did not activate the NADPH oxidase. COS7 cells lack p40phox, whose role in the NADPH oxidase is poorly understood. p40phox contains SH3 and phagocyte oxidase and Bem1p (PB1) domains that can mediate binding to p47phox and p67phox, respectively, along with a PX domain that binds to phosphatidylinositol-3-phosphate (PI(3)P), which is generated in phagosomal membranes. Expression of p40phox was sufficient to activate superoxide production in COSphoxFcγR phagosomes. FcγIIA-stimulated NADPH oxidase activity was abrogated by point mutations in p40phox that disrupt PI(3)P binding, or by simultaneous mutations in the SH3 and PB1 domains. Consistent with an essential role for PI(3)P in regulating the oxidase complex, phagosome NADPH oxidase activation in primary macrophages ingesting IgG-coated beads was inhibited by phosphatidylinositol 3 kinase inhibitors to a much greater extent than phagocytosis itself. Hence, this study identifies a role for p40phox and PI(3)P in coupling FcγR-mediated phagocytosis to activation of the NADPH oxidase.
The phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b 558 and cytosolic p67 phox , p47 phox , and p40 phox subunits that undergo membrane translocation upon cellular activation. The function of p40 phox , which binds p67 phox in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40 phox and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes. To better define the role of p40 phox in Fc␥R-induced oxidase activation, we used immunofluorescence and real-time imaging of Fc␥R-induced phagocytosis. YFP-tagged p67 phox and p40 phox translocated to granulocyte phagosomes before phagosome internalization and accumulation of a probe for PI3P. p67 phox and p47 phox accumulation on nascent and internalized phagosomes did not require p40 phox or PI3 kinase activity, although superoxide production before and after phagosome sealing was decreased by mutation of the p40 phox PI3P-binding domain or wortmannin. Translocation of p40 phox to nascent phagosomes required binding to p67 phox but not PI3P, although the loss of PI3P binding reduced p40 phox retention after phagosome internalization. We conclude that p40 phox functions primarily to regulate Fc␥R-induced NADPH oxidase activity rather than assembly, and stimulates superoxide production via a PI3P signal that increases after phagosome internalization. (Blood. 2008;112:3867-3877) IntroductionPhagocytic leukocytes are the front-line cellular defense against microbial attack, and are mobilized rapidly to the sites of infection where they ingest and kill opsonized microorganisms. The NADPH oxidase complex plays a central role in this process, as its assembly and activation on phagosomal membranes generate superoxide, the precursor of potent microbicidal oxidants. The importance of this enzyme is demonstrated by genetic defects in the NADPH oxidase complex that cause chronic granulomatous disease (CGD), characterized by recurrent severe and potentially lethal bacterial and fungal infections. 1 The NADPH oxidase includes the membrane-integrated flavocytochrome b, composed of gp91 phox and p22 phox , and the cytosolic components p47 phox , p67 phox , p40 phox , and Rac, a Rho-family GTPase, which translocate to flavocytochrome b upon cellular stimulation to activate superoxide production. [2][3][4] Segregation of regulatory components to the cytosol in resting cells facilitates the temporal and spatial regulation of NADPH oxidase activity. The p67 phox subunit is a Rac-GTP effector 2-4 containing a domain that activates electron transport through the flavocytochrome. 5 In resting cells, p67 phox is associated with p40 phox via complementary PB1 (phagocyte oxidase and Bem1p) motifs present in each protein. 2,[6][7][8] p67 phox is also linked to p47 phox via a high-affinity interaction involving an SH3 domain and a proline-rich region, respectively, in the C-termini of...
Many critical features of the organization and regulation of the phagocyte NADPH oxidase, a complex multi-subunit enzyme that generates superoxide for microbial killing, remain poorly defined. The active enzyme includes a membrane-bound flavocytochrome b along with p47phox, p67phox, p40phox, and Rac-GTP that are present in the cytosol of resting cells. p67phox is linked by high affinity interactions with both p47phox and p40phox, which appear to translocate as a trimeric complex upon cellular activation. The p47phox subunit acts as an adaptor to promote translocation by docking at a proline-rich target sequence on the flavocytochrome, and p67phox is a Rac-GTP effector containing a domain that activates electron transport. In contrast, the function of p40phox, which is not required for high level oxidase activity in cell free systems, is poorly understood. Recently, our group showed that p40phox plays key role in the activation of superoxide production during phagocytosis of IgG-opsonized targets in COSphoxFcγR cells. This model cell line contains stable transgenes for the flavocytochrome, p47phox, p67phox, and the FcγIIA receptor, without or with an additional transgene for p40phox. p40phox-dependent coupling of FcγR-mediated phagocytosis to superoxide production required an intact p40phox PX domain, which binds to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide generated by class III PI3 kinases in phagosome membranes (Suh et al J Exp Med 203, 1915Suh et al J Exp Med 203, 2006). Furthermore, a newly developed p40phox-null mouse exhibits reduced neutrophil NADPH oxidase activity in response to selected agonists, including IgG-opsonized targets (Ellson et al J Exp Med 203, 1927Ellson et al J Exp Med 203, 2006). In the current study, we investigated whether p40phox is required for translocation of p67phox during phagocytosis. We generated COSphoxFcγR cells expressing YFP-tagged p67phox from a stable transgene instead of untagged p67phox. Following incubation with IgG-opsonized sheep red blood cells (IgG-RBC), p67phox was detected on phagosome membranes at both early stages of phagosome cup formation and after closure, independent of whether or not p40phox was also co-expressed. However, NADPH oxidase activity was not detected in IgG-RBC phagosomes in COSphoxFcγR-p67phox-YFP cells unless p40phox was present. PMA-activated superoxide production was independent of p40phox, and Western blotting indicated there was no significant difference in expression of the other oxidase subunits in COSphoxFcγR-p67phox-YFP cells without or with the p40phox transgene. Further studies in PLB-985 granulocytes expressing stable transgenes for either YFP-tagged p67phox or p40phox showed that the PI3K inhibitor wortmannin inhibited phagosome NADPH oxidase activity and translocation of p40phox, but localization of p67phox to phagosomes was unaffected. These results indicate that although p40phox positively regulates NADPH oxidase activation during phagocytosis, recruitment of p67phox to the phagosome is independent of p40phox. Taken together, these data suggest that the PX domain of p40phox acts as a PI3P-dependent switch to activate the membrane-assembled NADPH oxidase complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.