It is known that high intensity fields are usually required to implement shortcuts to adiabaticity via transitionless quantum driving (TQD). Here, we show that this requirement can be relaxed by exploiting the gauge freedom of generalized TQD, which is expressed in terms of an arbitrary phase when mimicking the adiabatic evolution. We experimentally investigate the performance of generalized TQD in comparison to both traditional TQD and adiabatic dynamics. By using a Yb171 trapped ion hyperfine qubit, we implement a Landau-Zener adiabatic Hamiltonian and its (traditional and generalized) TQD counterparts. We show that the generalized theory provides energy-optimal Hamiltonians for TQD, with no additional fields required. In addition, the optimal TQD Hamiltonian for the Landau-Zener model is investigated under dephasing. Even using less intense fields, optimal TQD exhibits fidelities that are more robust against a decohering environment, with performance superior to that provided by the adiabatic dynamics.
Quantum thermodynamics aims at investigating both the emergence and the limits of the laws of thermodynamics from a quantum mechanical microscopic approach. In this scenario, thermodynamic processes with no heat exchange, namely, adiabatic transformations, can be implemented through quantum evolutions in closed systems, even though the notion of a closed system is always an idealization and approximation. Here, we begin by theoretically discussing thermodynamic adiabatic processes in open quantum systems, which evolve non-unitarily under decoherence due to its interaction with its surrounding environment. From a general approach for adiabatic non-unitary evolution, we establish heat and work in terms of the underlying Liouville superoperator governing the quantum dynamics. As a consequence, we derive the conditions that an adiabatic open-system quantum dynamics implies in the absence of heat exchange, providing a connection between quantum and thermal adiabaticity. Moreover, we determine families of decohering systems exhibiting the same maximal heat exchange, which imply in classes of thermodynamic adiabaticity in open systems. We then approach the problem experimentally using a hyperfine energy-level quantum bit of an Ytterbium 171 Yb + trapped ion, which provides a work substance for thermodynamic processes, allowing for the analysis of heat and internal energy throughout a controllable engineered dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.