The neuromorphic event cameras, which capture the optical changes of a scene, have drawn increasing attention due to their high speed and low power consumption. However, the event data are noisy, sparse, and nonuniform in the spatial-temporal domain with extremely high temporal resolution, making it challenging to process for traditional deep learning algorithms. To enable convolutional neural network models for event vision tasks, most methods encode events into point-cloud or voxel representations, but their performance still has much room for improvement. Additionally, as event cameras can only detect changes in the scene, relative movements can lead to misalignment, i.e., the same pixel may refer to different real-world points at different times. To this end, this work proposes the aligned compressed event tensor (ACE) as a novel event data representation, and a framework called branched event net (BET) for event-based vision under both static and dynamic scenes. We apply them on various datasets for object classification and action recognition tasks, and show that they surpass state-of-the-art methods by significant margins. Specifically, our method achieves 98.88% accuracy for the DVS128 action recognition task, and outperforms the second best method by large margins of 4.85%, 9.56% and 2.33% on N-Caltech101, DVSAction and NeuroIV datasets, respectively. Furthermore, the proposed ACE-BET is efficient, and achieves the fastest inference speed among various methods being tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.