Trypanosoma cruzi specific sequences were amplified by the polymerase chain reaction from total blood of human chagasic patients and normal individuals. A 330 bp fragment originating from kinetoplast DNA was specifically detected in most chagasic individuals. We tested the sensitivity and specificity of this method in normal and affected individuals attending the Evandro Chagas Hospital, Rio de Janeiro. The results of these tests were compared with serological diagnosis performed using standard techniques, and in some cases with xenodiagnosis. We found that none of the serologically negative individuals gave any specific amplification product, whereas 55 out of 61 patients previously serodiagnosed as chagasic were positive using the PCR method (sensitivity: 90%). Xenodiagnosis, which is currently considered to be the most sensitive parasitological technique for Chagas' disease diagnosis, detected only 12 out of 28 serologically positive patients (sensitivity: 43%). The usefulness of the PCR method was further investigated with chagasic patients who had received anti-parasite treatment with benznidazole. It has always been difficult to evaluate the incidence of cure in such cases by serology, since a humoral response against T. cruzi antigens may remain for years even in the absence of the parasite. We observed a positive amplification result in only 9 out of 32 treated patients who remained reactive when tested using classical serology. These observations suggest that PCR is the most sensitive technique available for direct detection of T. cruzi in chagasic patients and that it can be a very useful instrument for the follow-up of patients after specific treatment.
BackgroundKnockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood.MethodsWestern blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.ResultsKnockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition.ConclusionEGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
β-Casomorphin-7 (β-CM-7) is a milk biological active peptide. The present study is aimed to investigate the protective effects of β-CM-7, against oxidative stress in pancreas of streptozotocin-induced diabetic rats by assaying malondialdehyde (MDA), nitric oxide (NO) level, the activity of enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), and NF-κB, inducible nitric oxide synthase (iNOS) gene expression. A significant increase in the level of oxidative stress was observed in pancreas of the diabetic rats when compared to control rats. After 15 d oral administration of β-CM-7 (7.5 × 10 −8 mol/d), the pancreas MDA level was markedly reduced. Oral administration of β-CM-7 to diabetic rats showed an obviously increase in the activity of catalase in pancreas, oral administration of β-CM-7 to the diabetic group of rats also showed a reduction of NF-κB and iNOS gene expression in pancreas. The elevated pancreas NO level was markedly reduced by the oral administration of β-CM-7. Thus, the results of the present study suggest that β-CM-7 may cause protective effects such as pronounced decreasing in oxidative stress and inhibiting NF-κB-iNOS-NO signal pathway in pancreas of diabetes rats.
Oxidative stress and apoptosis play a vital role in the pathogenesis of contrast-induced acute kidney injury (CI-AKI). The purpose of our study was to investigate the protective effects and mechanisms of melatonin against CI-AKI in a CI-AKI mouse model and NRK-52E cells. We established the CI-AKI model in mice, and the animals were pretreated with melatonin (20 mg/kg). Our results demonstrated that melatonin treatment exerted a renoprotective effect by decreasing the level of serum creatinine (SCr) and blood urea nitrogen (BUN), lessening the histological changes of renal tubular injuries, and reducing the expression of neutrophil gelatinase-associated lipid (NGAL), a marker of kidney injury. We also found that pretreatment with melatonin remarkably increased the expression of Sirt3 and decreased the ac-SOD2 K68 level. Consequently, melatonin treatment significantly decreased the oxidative stress by reducing the Nox4, ROS, and malondialdehyde (MDA) content and by increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity levels. The antiapoptotic effect of melatonin on CI-AKI was revealed by decreasing the ratio of Bax/Bcl2 and the cleaved caspase3 level and by reducing the number of apoptosis-positive tubular cells. In addition, melatonin treatment remarkably reduced the inflammatory cytokines of interleukin-1β (IL-1β), tumor necrosis factor α (TNFα), and transforming growth factor β (TGFβ) in vivo and in vitro. Sirt3 deletion and specific Sirt3 siRNA abolished the above renoprotective effects of melatonin in mice with iohexol-induced acute kidney injury and in NRK-52E cells. Thus, our results demonstrated that melatonin exhibited the renoprotective effects of antioxidative stress, antiapoptosis, and anti-inflammation by the activation of Sirt3 in the CI-AKI model in vivo and in vitro. Melatonin may be a potential drug to ameliorate CI-AKI in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.