Non-traumatic osteonecrosis of the femoral head is the main cause of disability in young individuals and incurs major health care expenditure. The lifestyle changes in recent years, especially increased use of hormones and alcohol consumption, has greatly increased the incidence of femoral head necrosis. The underlying causes and risk factors of osteonecrosis of the femoral head are increasingly being elucidated, which has led to the development of novel surgical and non-surgical treatment options. Although the main goal of any treatment method is prevention and delaying the progression of disease, there is no common consensus on the most suitable method of treatment. The present review discussed the latest developments in the etiology and treatment methods for femoral head necrosis. Contents 1. Introduction 2. Epidemiology 3. Pathogenesis 4. Treatment strategies 5. Conclusion
Background: In recent years, intervertebral disc (IVD) degeneration (IDD) has increased in age. There is still a lack of effective treatment in clinics, which cannot improve the condition of IDD at the level of etiology. Objective: To explore IDD pathogenesis at the cellular and gene levels and investigate lactotransferrin (LTF) expression in IDD patients and its possible mechanism. Methods: We downloaded the IDD data set from the Gene Expression Omnibus (GEO) database, screened the differentially expressed genes (DEGs) and hub genes and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to construct a protein–protein interaction (PPI) network. Subsequently, we verified LTF's regulatory mechanism through cell experiments. IL-1β was used to intervene in nucleus pulposus cells (NPCs) to construct the IDD cell model, and LTF and Fas expression was detected by qRT–PCR. LTF inhibitor, Fas inhibitor, LTF mimic, and Fas mimic were used to intervene in each group. Western blotting was used to detect Fas, Caspase-3, Bax, and Bcl-2 expression. Results: A total of 131 DEGs and 10 hub genes were screened. LTF mRNA in the IDD model was significantly higher than that in the control group, while Fas' mRNA was significantly lower. When LTF was upregulated or downregulated in NPCs, apoptosis marker expression showed the opposite trend. The rescue test showed that LTF and Fas' overexpression greatly enhanced NPC apoptosis. Conclusion: LTF promotes IDD progression by regulating Fas in NPCs, and it may be an effective gene therapy target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.