Removal of volatile fatty acids in anaerobic digestion of organic wastes can accelerate eventual decomposition of organic wastes to CO 2 and H 2 O using a recovery of electric energy by a microbial fuel cell. The fuel cell anode chamber was a 10 cm (I.D.)×20 cm long cylindrical Plexiglass having an ion ceramic cylinder separator (I.D.10 mm, O.D.12 mm, 0.3 µm average pore size). The aluminum foil cathode (12 cm 2 surface area) was located inside the ceramic cylinder. Between the two cylinders, 1 liter of activated carbon particles was packed as anode electrode having a void fraction of 0.4. This fuel cell was connected to a 5 liter bioreactor (working volume 1.5 liter), and the bioreactor was run in batch mode by re-circulating a synthetic wastewater of 5 g/L glucose. Maximum TVFA (total volatile fatty acids) and SCOD (soluble chemical oxygen demand) removal rate were 3.79 g/L·day, 5.88 g/L·day, respectively. TVFA removal efficiency (92.7%) and SCOD removal efficiency (94.7%) under maximum current density operation were higher than the operation with maximum power density. In acid fermentation, butyric acid concentration was highest because Clostridium butyricum was a dominant microbial communitiy in the inoculum. The microbial cells collected from the anode bio-film samples were affiliated with Bacillus cereus based on the nucleotide sequences of dominant DGGE (denaturing gradient gel electrophoresis) bands.
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.