In an effort to improve the T-DNA-mediated transformation frequency of economically important crops, we investigated the possible enhancement effect of multiple copies of virG genes contained in Agrobacterium tumefaciens strains upon the transient transformation of celery, carrot and rice tissues. Four days after A. tumefaciens infection, we performed histochemical beta-glucuronidase (GUS) assays to determine the frequency of transient transformation of calli from celery and carrot, and explants from rice and celery. Additional copies of octopine- and agropine-type virG genes in A. tumefaciens strains containing an agropine-type Ti-plasmid enhanced the frequency of transient transformation of celery and rice. This enhancement ranged from 25% to five-fold, depending upon the source of the virG gene and the plant tissues inoculated. For both rice and celery, we observed a greater enhancement of transformation using A. tumefaciens strains containing additional copies of an octopine-type virG gene than with strains harboring additional copies of an agropine-type virG gene. Multiple copies of virG genes contained in A. tumefaciens strains harboring a nopaline-type Ti-plasmid had a smaller enhancing effect upon the transformation of celery tissues, and no enhancing effect upon the transformation of rice. In contrast, we obtained a three-fold increase in the transient transformation frequency of carrot calli using an A. tumefaciens strain harboring a nopaline-type Ti-plasmid and additional copies of an octopine-type virG gene. Our results show that multiple copies of virG in A. tumefaciens can greatly enhance the transient transformation frequency of celery, carrot and rice tissues, and that this enhancement is influenced by both the type of Ti-plasmid harbored by A. tumefaciens and by the infected plant species.
Transient expression of GUS in rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens was characterized using binary vectors containing gusA genes that express minimal (pKIWI105 and pCNL1) or no (p35S-GUS-INT and pCNL56) GUS activity in bacteria. Four-day old seedlings obtained from seeds or immature embryos of rice were cut into shoot, root, and seed remnants and inoculated with various strains of A. tumefaciens. Transient GUS expression events were quantitated histochemically by determining the frequency of explants exhibiting blue spots indicative of GUS at four to six days after cocultivation with A. tumefaciens. A. tumefaciens strains that did not contain the gusA gene (At643) or a Ti-plasmid (At563 and At657) did not elicit any blue staining characteristic of GUS activity. Several parameters were important in obtaining efficient transient expression of GUS in rice mediated by A. tumefaciens. The growth regulator 2,4-D inhibited GUS expression if present during the seed germination period, but the presence of 6 mg/l 2,4-D during cocultivation of the explants with A. tumefaciens slightly enhanced GUS expression efficiency. All 21 rice cultivars tested expressed GUS after co-cultivation with A. tumefaciens. The GUS expression frequency was highest amongst the indica cultivars. The frequencies of GUS expression in japonica cultivars and in Oryza glaberrima cultivars (grown primarily in Africa) were generally one-half to one-third the level found for indica varieties. Leaf explants were more susceptible to A. tumefaciens-facilitated GUS expression than were roots or seed remnants. The vir genes of an agropine-type Ti-plasmid of A. tumefaciens were most effective in directing transient GUS expression in rice, whereas those of a nopaline-type and an octopine-type plasmid were less effective. We have also found that the frequency of transient expression of GUS was higher with pBIN19 as the precursor cloning vector than with pEND4K as the precursor cloning vector. Reasons for differences in effectiveness of these binary vectors are discussed. Using the conditions described here, A. tumefaciens-mediated frequencies of transient GUS expression in four-day old shoots of several rice cultivars were routinely in excess of 50%.
Most higher plants have complex genomes containing large quantities of repetitive DNA interspersed with low-copy-number sequences. Many of these repetitive DNAs are mobile and have homology to RNAs in various cell types. This can make it difficult to identify the genes in a long chromosomal continuum. It was decided to use genic sequence conservation and grass genome co-linearity as tools for gene identification. A bacterial artificial chromosome (BAC) clone containing sorghum genomic DNA was selected using a maize Adh1 probe. The 165 kb sorghum BAC was tested for hybridization to a set of clones representing the contiguous 280 kb of DNA flanking maize Adh1. None of the repetitive maize DNAs hybridized, but most of the low-copy-number sequences did. A low-copy-number sequence that did cross-hybridize was found to be a gene, while one that did not was found to be a low-copy-number retrotransposon that was named Reina. Regions of cross-hybridization were co-linear between the two genomes, but closer together in the smaller sorghum genome. These results indicate that local genomic cross-referencing by hybridization of orthologous clones can be an efficient and rapid technique for gene identification and studies of genome organization.
A cluster of five alpha-zein subfamily 4 (alpha-zein SF4) genes are present in a 56 kb region of the maize W22 genome. Two types of alpha-zein SF4 genes are in the cluster. One of the genes, termed a type 1 (T1) alpha-zein SF4 gene, contains no early in-frame stop codons. Four of the genes, termed type 2 (T2) alpha-zein SF4 genes, contain one or two early in-frame stop codons. The base sequence of the T1 alpha-zein SF4 gene is similar (> 90%) to the sequences of any of the four T2 alpha-zein SF4 genes. However, their sequences differ markedly at distances greater than -875 bp upstream from the translation initiation codon of the alpha-zein coding region. This region of dissimilarity is well inside the functional 5'-flanking region for the genes since a 1.8 kb transcript is initiated in this region and the sequences of the T2 alpha-zein SF4 genes are similar in this region. Two sizes of mRNA transcripts, 1.8 kb and 0.9 kb, were detected in a gene specific manner for 4 of the 5 genes in this alpha-zein SF4 gene cluster. One of the T2 alpha-zein SF4 genes had only the 0.9 kb transcript. The RNA level for the 0.9 kb transcript of the T1 alpha-zein SF4 gene was 5- to 10-fold higher than the transcript levels of any of the T2 alpha-zein SF4 genes. In each case, the amount of the 0.9 kb transcript detected was at least 5-fold higher than the amount of the 1.8 kb transcript. A cDNA clone with a sequence identical to a T2 alpha-zein SF4 gene was isolated, providing the first direct evidence for the transcription of T2 alpha-zein genes containing early in-frame stop codon(s) in maize endosperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.