Abstract. The pattern and signal transduction of neuronal apoptosis in the brain of the silk moth, Bombyx mori, during postembryonic life, were characterized. Peak numbers of apoptotic neurons were detected in 4 day old 4th instar larvae, 9 day old 5th instar larvae and 4 day old pupae, indicating three waves of neuronal apoptosis during postembryonic development. Most of the apoptotic neurons were in the lateral portions of the brain. No apoptotic neurons were detected in 1 day old 1st instar larvae or in 7 day old pupae to 1 day old adults. Injection of 20-hydroxyecdysone (20E) into larvae resulted in a substantial increase in the brain in both neuronal apoptosis and cleavage of procaspases-8 and -3 into caspases-8 and -3. However, the injection of larvae with actinomycin D or cycloheximide inhibited death of pre-apoptotic neurons. Both the cleavage of procaspases-8 and -3 and death of pre-apoptotic neurons were inhibited by a general caspase inhibitor and caspase-8 and -3 inhibitors injected into larvae. These results suggest that 20E triggered the synthesis of a new protein that, in turn, induces cleavage of procaspases-8 and -3 into caspases-8 and -3. These caspases are prerequisites for neuronal apoptosis in postembryonic brains.
This study was conducted to investigate effects of brain‐derived neurotrophic factor (BDNF) on the neurite growth of deutocerebral neurons in vitro, and production of BDNF‐like neuropeptide from brain of the silk moth, Bombyx mori. In primary culture of antennal lobe (AL) neurons with BDNF, it promoted a significant neurite extension of putative AL projection neurons and an outgrowth of branches from principal neurites of putative AL interneurons. Results from immunolabeling of brain and retrocerebral complex showed that BDNF ‐like neuropeptide labeled in brain was synthesized by median and lateral neurosecretory cells, then transported to corpora allata for storage.
Abstract.A fluorescent triple staining method was developed to stain the cytoplasm of neurons red, the nuclei of all kinds of cells, including neurons, blue and the nuclei of apoptotic neurons in cyan in the twelve ventral ganglia (VG) of the Bombyx mori ventral nerve cord. This differential staining method was used to distinguish between apoptotic and normal neurons in the suboesophageal ganglion (SOG), thoracic ganglia (TG)1 to TG3 and abdominal ganglia (AG)1 to AG8 and also determine the changes in the numbers of apoptotic neurons that occur during postembryonic development. In most of the VG tested, neuronal apoptosis was most marked during the period from the end of larval life to the mid pupal stage. The greatest number of apoptotic neurons was found in SOG of day-5 pupae, TG1 to TG3 and AG1 to AG4 of day-1 pupae, and AG5 to AG8 of day-4 pupae. In vivo injection of 20-hydroxyecdysone (20E) into day-8 5th instar larvae resulted in both a considerable increase in the number of apoptotic neurons and cleavage of procaspase-3 into caspase-3, which induced neuronal apoptosis in SOG and AG6 to AG8 in day-1 pupae, and a slight increase in the number of apoptotic neurons in TG1. In TG3 and AG4, however, it had little effect on the number of apoptotic neurons or cleavage of procaspase-3. Treatment of the VG of both day-8 5th instar larvae and day-2 pupae with protein synthesis inhibitors by in vivo injection triggered a significant inhibition of neuronal apoptosis and procaspase-3 cleavage in most of these ganglia in day-1 pupae and day-4 pupae, but not TG3 and AG4, in which there was little procaspase-3 and caspase-3. In vivo injection of caspase-8 and -3 inhibitors into day-8 5th instar larvae and day-2 pupae led to a substantial inhibition of neuronal apoptosis and of procaspase-3 cleavage in SOG, AG6 and TAG, but not in TG3 or AG4 of day-1 pupae and day-4 pupae. These findings suggest that neurons that die in SOG, TG1 and AG6 to AG8 in day-1 and -4 pupae may undergo apoptosis induced by the synthesis of a new protein and caspase-8-and -3-implicated signal transduction by the increase in titre of 20E in the haemolymph but not the neuronal aopotosis in TG3 and AG4. This study provides neurobiologists with valuable information and a means of studying neuronal apoptosis in the nervous system of insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.