Oleanolic acid (1) was identified as an anti-HIV principle from several plants, including Rosa woodsii (leaves), Prosopis glandulosa (leaves and twigs), Phoradendron juniperinum (whole plant), Syzygium claviflorum (leaves), Hyptis capitata (whole plant), and Ternstromia gymnanthera (aerial part). It inhibited HIV-1 replication in acutely infected H9 cells with an EC50 value of 1.7 microg/mL, and inhibited H9 cell growth with an IC50 value of 21.8 microg/mL [therapeutic index (T. I.) 12.8]. Pomolic acid, isolated from R. woodsii and H. capitata, was also identified as an anti-HIV agent (EC50 1.4 microg/mL, T. I. 16.6). Although ursolic acid did show anti-HIV activity (EC50 2.0 microg/mL), it was slightly toxic (IC50 6.5 microg/mL, T. I. 3.3). A new triterpene (11) was also isolated from the CHCl3-soluble fraction of R. woodsii, though it showed no anti-HIV activity. The structure of 11 was determined to be 1beta-hydroxy-2-oxopomolic acid by spectral examination. Based on these results, we examined the anti-HIV activity of oleanolic acid- or pomolic acid-related triterpenes isolated from several plants. In addition, we previously demonstrated that derivatives of betulinic acid, isolated from the leaves of S. claviflorum as an anti-HIV principle, exhibited extremely potent anti-HIV activity. Accordingly, we prepared derivatives of oleanolic acid and evaluated their anti-HIV activity. Among the oleanolic acid derivatives, 18 demonstrated most potent anti-HIV activity, with an EC50 value of 0. 0005 microg/mL and a T. I. value of 22 400.
BackgroundAntibody-drug conjugates (ADCs) targeting the RON receptor, a tumorigenic factor contributing to cancer malignancy, has been considered as a novel strategy for cancer therapy. Here we describe a humanized antibody recognizing the RON plexin-semaphorin-integrin (PSI) domain with increased drug delivery capability for potential clinical application.MethodMonoclonal antibody PCM5B14 specific to the human and monkey RON PSI domain was generated and characterized by various immunological methods. Humanized antibody H5B14 was created by grafting PCM5B14 complementarity-determining regions into human IgG1/κ acceptor frameworks and conjugated with monomethyl auristatin E and duocarmycin to form two H5B14-based ADCs. Stability of H5B14-based ADCs in human plasma was measured using hydrophobic interaction chromatography. Various biochemical and biological assays were used to determine ADC- regulated RON internalization, cell viability, spheroid formation, and death of cancer stem-like cells. Efficacies of H5B14-based ADCs in vivo were validated using tumor xenograft models. Maximal tolerated doses of H5B14-based ADCs were established in mice.ResultsH5B14 was highly specific to the human RON PSI domain and superior over other anti-RON ADCs in induction of RON internalization in various cancer cell lines tested. H5B14-based ADCS had a drug to antibody ratio of ~ 3.70:1 and were stable in human plasma with a minimal dissociation within a 10-day period. Functionally, H5B14-mediated drug delivery decreased cell viability at early stages with an average IC50 at ~ 20 nM in multiple cancer cell lines examined. H5B14-based ADCs also inhibited spheroid formation and caused death of cancer stem-like cells with RON+/CD44+/ESA+ phenotypes. In vivo, H5B14-based ADCs in a single injection inhibited tumor xenograft growth mediated by multiple cancer cell lines. Tumoristatic concentrations calculated from xenograft tumor models were in the range of 0.63 to 2.0 mg/kg bodyweight. Significantly, H5B14-based ADCs were capable of eradicating tumors at variable levels across multiple xenograft models regardless their malignant statuses. Toxicologically, H5B14-based ADCs were well tolerated in mice up to 60 mg/kg.ConclusionH5B14-based ADCs targeting the RON PSI domain are superior in inducing RON internalization, leading to robust drug delivery and overall inhibition and eradication of tumors in multiple xenograft models. These findings warrant H5B14-based ADCs for clinical trials in the future.
a b s t r a c tMiddle East respiratory syndrome (MERS) is a viral respiratory disease caused by a de novo coronavirus-MERS-CoV-that is associated with high mortality. However, the mechanism by which MERS-CoV infects humans remains unclear. To date, there is no effective vaccine or antibody for human immunity and treatment, other than the safety and tolerability of the fully human polyclonal Immunoglobulin G (IgG) antibody (SAB-301) as a putative therapeutic agent specific for MERS. Although rapid diagnostic and public health measures are currently being implemented, new cases of MERS-CoV infection are still being reported. Therefore, various effective measures should be taken to prevent the serious impact of similar epidemics in the future. Further investigation of the epidemiology and pathogenesis of the virus, as well as the development of effective therapeutic and prophylactic anti-MERS-CoV infections, is necessary. For this purpose, detailed information on MERS-CoV proteins is needed. In this review, we describe the major structural and nonstructural proteins of MERS-CoV and summarize different potential strategies for limiting the outbreak of MERS-CoV. The combination of computational biology and virology can accelerate the advanced design and development of effective peptide therapeutics against MERS-CoV. In summary, this review provides important information about the progress of the elimination of MERS, from prevention to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.