The potential-driving model is used to describe the driving potential distribution and to calculate the pre-neutron emission mass distributions for different incident energies in the reaction. The potential-driving model is implemented in Geant4 and used to calculate the fission-fragment yield distributions, kinetic energy distributions, fission neutron spectrum and the total nubar for the reaction. Compared with the built-in G4ParaFissionModel, the calculated results from the potential-driving model are in better agreement with the experimental data and evaluated data. Given the good agreement with the experimental data, the potential-driving model in Geant4 can describe well the neutron-induced fission of actinide nuclei, which is very important for the study of neutron transmutation physics and the design of a transmutation system.
Novel measurements of the neutron energy spectra of the 9Be(d,n)10B reaction with a thick beryllium target are performed using a fast neutron time-of-flight (TOF) spectrometer for the neutron emission angles and , and the incident deuteron energies are 250 and 300 keV, respectively. The neutron contributions from the 9Be(d,n)10B reaction are distributed relatively independently for the ground state and the first, second, and third excited states of 10B. The branching ratios of the 9Be(d,n)10B reaction for the different excited states of 10B are obtained for the neutron emission angles and , and the incident deuteron energies are 250 and 300 keV, respectively. The branching ratio of the 9Be(d,n)10B reaction for the third excited state decreases with increase in the incident deuteron energy, and the branching ratios for the ground state and the second excited state increase with increase in the neutron emission angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.