Contemporary and future programming languages for HPC promote hybrid parallelism and shared memory abstractions using a global address space. In this programming style, data races occur easily and are notoriously hard to find. Existing state-of-the-art data race detectors exhibit 10 × −100× performance degradation and do not handle hybrid parallelism. In this paper we present the first complete implementation of data race detection at scale for UPC programs. Our implementation tracks local and global memory references in the program and it uses two techniques to reduce the overhead: 1) hierarchical function and instruction level sampling; and 2) exploiting the runtime persistence of aliasing and locality specific to Partitioned Global Address Space applications. The results indicate that both techniques are required in practice: well optimized instruction sampling introduces overheads as high as 6500% (65× slowdown), while each technique in separation is able to reduce it only to 1000% (10× slowdown). When applying the optimizations in conjunction our tool finds all previously known data races in our benchmark programs with at most 50% overhead when running on 2048 cores. Furthermore, while previous results illustrate the benefits of function level sampling, our experiences show that this technique does not work for scientific programs: instruction sampling or a hybrid approach is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.