PtRu and PtRuW ternary electrocatalysts were synthesized using an NaBH 4 reduction method. A uniform distribution of particles, with average particle size of 3-3.5 nm was indentified from X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemically active surface area was slightly decreased after the addition of W into PtRu. When W was added to PtRu, the specific and mass activity of methanol electro-oxidation was increased. The most active catalyst was Pt 5 Ru 4 W, of which specific and mass activities were 265.38 mA/m 2 and 6.21 A/g . catal, respectively. The specific and mass activity was 390 and 320% higher than that of PtRu.
PtSn/C and Pt5Sn4M/C (M = W, Pd, Ni) electrocatalysts were prepared by impregnation method using NaBH4 as a reducing agent. Chemical composition, crystalline size, and alloy formation were determined by EDX, XRD and TEM. The average particle sizes of the synthesized catalysts were approximately 3.64-4.95 nm. The electro-chemical properties were measured by CO stripping, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. The maximum specific activity of the electro-catalysts for ethanol electro-oxidation was 406.08 mA m(-2) in Pt5Sn4Pd/C. The poisoning rate of the Pt5Sn4Pd/C (0.0017% s(-1)) was 4.5 times lower than that of the PtSn/C (0.0076% s(-1)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.