A precursor for Y 3 Al 5 O 12 was synthesized as a YAG sol by simply dissolving Y 2 O 3 powder in an alumina sol. Phasepure Y 3 Al 5 O 12 powder was obtained by precipitating the YAG sol with an aqueous dilute ammonia solution followed by calcination at 1100°C. TG/DTA analysis showed an exotherm at 938°C attributed to formation of YAG phase and weight loss of 44% at 1000°C. XRD and FT-IR analysis showed that phase-pure YAG can be formed through noncrystalline and metastable hexagonal YAlO 3 without forming either yttrium or aluminum formate intermediate.
Surface modification of Si3N4 with alumina was tried. It was achieved by simply mixing Si3N4 powder with an alumina sol up to ∼2 wt% as alumina in an aqueous medium, dried, and followed by calcination at 400°C for 1 h. A TEM micrograph showed a coating layer of ∼15 nm thickness. The isoelectric point of the modified Si3N4 powder with porous alumina was at pH 7.8, which is different from 5.8 and 8.6 for Si3N4 and amorphous alumina, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.