The synthesis of atomically thin transition-metal disulfides (MS2) with layer controllability and large-area uniformity is an essential requirement for their application in electronic and optical devices. In this work, we describe a process for the synthesis of WS2 nanosheets through the sulfurization of an atomic layer deposition (ALD) WO3 film with systematic layer controllability and wafer-level uniformity. The X-ray photoemission spectroscopy, Raman, and photoluminescence measurements exhibit that the ALD-based WS2 nanosheets have good stoichiometry, clear Raman shift, and bandgap dependence as a function of the number of layers. The electron mobility of the monolayer WS2 measured using a field-effect transistor (FET) with a high-k dielectric gate insulator is shown to be better than that of CVD-grown WS2, and the subthreshold swing is comparable to that of an exfoliated MoS2 FET device. Moreover, by utilizing the high conformality of the ALD process, we have developed a process for the fabrication of WS2 nanotubes.
Semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) are promising gas-sensing materials due to their large surface-to-volume ratio. However, their poor gas-sensing performance resulting from the low response, incomplete recovery, and insufficient selectivity hinders the realization of high-performance 2D TMDC gas sensors. Here, we demonstrate the improvement of gas-sensing performance of large-area tungsten disulfide (WS) nanosheets through surface functionalization using Ag nanowires (NWs). Large-area WS nanosheets were synthesized through atomic layer deposition of WO followed by sulfurization. The pristine WS gas sensors exhibited a significant response to acetone and NO but an incomplete recovery in the case of NO sensing. After AgNW functionalization, the WS gas sensor showed dramatically improved response (667%) and recovery upon NO exposure. Our results establish that the proposed method is a promising strategy to improve 2D TMDC gas sensors.
The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption.
Rare earth oxide (REO) atomic layer deposition (ALD) processes are investigated for hydrophobic coatings. Thermal and plasmaenhanced ALD (PE-ALD) Er 2 O 3 and Dy 2 O 3 are developed using the newly synthesized Er and Dy precursors bis-methylcyclopentadienyl-diisopropylacetamidinate-erbium and bis-isopropylcyclopentadienyl-diisopropyl-acetamidinate-dysprosium, with H 2 O and O 2 plasma counter oxidants. The Er and Dy precursors show typical ALD growth characteristics with no nucleation incubation, indicating that they are suitable ALD precursors. The hydrophobicities of ALD-grown Er 2 O 3 and Dy 2 O 3 are investigated, together with those of ALD-grown Y 2 O 3 , La 2 O 3 , and CeO 2 that were previously developed for high-k applications. All the ALD-grown REOs show high hydrophobicity, with water contact angles as high as 90°. After annealing at 500 °C in air for 2 h, hydrophobicity is degraded depending on the kind of material; this degradation is related to the hygroscopy of REOs. In addition, we demonstrate the fabrication of a superhydrophobic surface by depositing highly conformal ALD REO films on 3D Si nanowire nanostructures. The Si NWs are conformally coated with ALD Y 2 O 3 , yielding a surface with a water contact angle of about 158°. The ALD REOs reported herein should find widespread applicability in the fabrication of robust hydrophobic coatings.
A process for the self-limited layer synthesis (SLS) of WSe 2 on SiO 2 substrates has been developed that provides systematic layer number controllability with micrometer-scale (>90%) and wafer-scale (∼8 cm) uniformity suitable electronic and optoelectronic device applications. This was confirmed by the fabrication and testing of a WSe 2 back-gated field effect transistor (FET) using Pd (30 nm) as the contact metal, which exhibited p-type behavior with an on/off ratio of ∼10 6 and a field-effect hole mobility of 2.2 cm 2 V −1 s −1 value, which was higher than has been reported for WSe 2 -based FETs produced by conventional chemical vapor deposition. On the basis of these results, it is proposed that the SLS method is universally applicable to a range of device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.