The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption.
By plasma-enhanced chemical vapor deposition, a molybdenum disulfide (MoS2 ) thin film is synthesized directly on a wafer-scale plastic substrate at below 300 °C. The carrier mobility of the films is 3.74 cm(2) V(-1) s(-1) . Also, humidity is successfully detected with MoS2 -based sensors fabricated on the flexible substrate, which reveals its potential for flexible sensing devices.
The practical use of graphene in consumer electronics has not been demonstrated since the size, uniformity, and reliability problems are yet to be solved to satisfy industrial standards. Here we report mass-produced graphene films synthesized by hydrogen-free rapid thermal chemical vapor deposition (RT-CVD), roll-to-roll etching, and transfer methods, which enabled faster and larger production of homogeneous graphene films over 400 × 300 mm(2) area with a sheet resistance of 249 ± 17 Ω/sq without additional doping. The properties of RT-CVD graphene have been carefully characterized by high-resolution transmission electron microscopy, Raman spectroscopy, chemical grain boundary analysis, and various electrical device measurements, showing excellent uniformity and stability. In particular, we found no significant correlation between graphene domain sizes and electrical conductivity, unlike previous theoretical expectations for nanoscale graphene domains. Finally, the actual application of the RT-CVD films to capacitive multitouch devices installed in the most sophisticated mobile phone was demonstrated.
The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.
We describe a method for synthesizing large-area and uniform molybdenum disulfide films, with control over the layer number, on insulating substrates using a gas phase sulfuric precursor (H2S) and a molybdenum metal source. The metal layer thickness was varied to effectively control the number of layers (2 to 12) present in the synthesized film. The films were grown on wafer-scale Si/SiO2 or quartz substrates and displayed excellent uniformity and a high crystallinity over the entire area. Thin film transistors were prepared using these materials, and the performances of the devices were tested. The devices displayed an on/off current ratio of 10(5), a mobility of 0.12 cm(2) V(-1) s(-1) (mean mobility value of 0.07 cm(2) V(-1) s(-1)), and reliable operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.