Ag/AgCl reference electrodes fabricated from pulled quartz tubes with orifice radii of 20 nm to 20 µm were characterized in KCl solutions of different concentrations by cyclic voltammetry. Linear current-voltage (i-V) dependence was observed with micropipet electrodes (with micrometer-sized tips) with the same concentration (0.01-1 M) of KCl inside and outside the pipet, but current rectification was found at nanopipet electrodes at KCl concentrations of e0.1 M (with nanometer-sized tips). This is attributed to formation of a diffuse electrical double layer within the tip orifice. The effects of electrode size, electrolyte concentration, and solution pH on the nonlinear i-V behavior of these electrodes were investigated. A model for the observed behavior shows the rectification to be caused by the permselectivity in the tip region and the geometric asymmetry of the tip orifice. This phenomenon may be important in studies of ion transport in charged channels and porous membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.