The energy storage performance of lithium-ion batteries (LIBs) depends on the electrode capacity and electrode/cell design parameters, which have previously been addressed separately, leading to a failure in practical implementation. Here, we show how conformal graphene (Gr) coating on Ni-rich oxides enables the fabrication of highly packed cathodes containing a high content of active material (~99 wt%) without conventional conducting agents. With 99 wt% LiNi0.8Co0.15Al0.05O2 (NCA) and electrode density of ~4.3 g cm-3, the Gr-coated NCA cathode delivers a high areal capacity, ~5.4 mAh cm−2 (~38% increase) and high volumetric capacity, ~863 mAh cm-3 (~34% increase) at a current rate of 0.2 C (~1.1 mA cm-2); this surpasses the bare electrode approaching a commercial level of electrode setting (96 wt% NCA; ~3.3 g cm-3). Our findings offer a combinatorial avenue for materials engineering and electrode design toward advanced LIB cathodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.