In our ability to discriminate compliant, or ‘soft,’ objects, we rely upon information acquired from interactions at the finger pad. We have yet to resolve the most pertinent perceptual cues. However, doing so is vital for building effective, dynamic displays. By introducing psychophysical illusions through spheres of various size and elasticity, we investigate the utility of contact area cues, thought to be key in encoding compliance. For both active and passive touch, we determine finger pad-to-stimulus contact areas, using an ink-based procedure, as well as discrimination thresholds. The findings indicate that in passive touch, participants cannot discriminate certain small compliant versus large stiff spheres, which generate similar contact areas. In active touch, however, participants easily discriminate these spheres, though contact areas remain similar. Supplementary cues based on stimulus rate and/or proprioception seem vital. One cue that does differ for illusion cases is finger displacement given a volitionally applied force.
When interacting with deformable objects, tactile cues at the finger pad help inform our perception of material compliance. Nearly all prior studies have relied on highly homogenous, engineered materials such as silicone-elastomers and foams. In contrast, we employ soft plum fruit varying in ripeness; ecological substances associated with tasks of everyday life. In this context, we investigate volitional exploratory strategies and contact interactions, for comparison to engineered materials. New measurement techniques are introduced, including an ink-based method to capture finger pad to fruit contact interactions, and instrumented force and optical sensors to capture impose force and displacement. Human-subjects experiments are conducted for both single finger touch and two finger grasp. The results indicate that terminal contact areas between soft and hard plums are indistinguishable, but the newly difined metric of virtual stiffness can differentiate between the fruits' ripeness, amidst their local variations in geometry, stiffness, and viscoelasticity. Moreover, it affords discrimination independent of one's touch force. This metric illustrates the tie between the deployment of active, exploratory strategies and the elicitation of optimal cues for perceptual discrimination improves further in pinch grasp, which is indeed a more natural gesture for judging ripeness.
Disabilities after neural injury, such as stroke, bring tremendous burden to patients, families and society. Besides the conventional constrained-induced training with a paretic arm, bilateral rehabilitation training involves both the ipsilateral and contralateral sides of the neural injury, fitting well with the fact that both arms are needed in common activities of daily living (ADLs), and can promote good functional recovery. In this work, the fusion of a gesture sensor and a haptic sensor with force feedback capabilities has enabled a bilateral rehabilitation training therapy. The Leap Motion gesture sensor detects the motion of the healthy hand, and the omega.7 device can detect and assist the paretic hand, according to the designed cooperative task paradigm, as much as needed, with active force feedback to accomplish the manipulation task. A virtual scenario has been built up, and the motion and force data facilitate instantaneous visual and audio feedback, as well as further analysis of the functional capabilities of the patient. This task-oriented bimanual training paradigm recruits the sensory, motor and cognitive aspects of the patient into one loop, encourages the active involvement of the patients into rehabilitation training, strengthens the cooperation of both the healthy and impaired hands, challenges the dexterous manipulation capability of the paretic hand, suits easy of use at home or centralized institutions and, thus, promises effective potentials for rehabilitation training.
We employ distinct exploratory procedures to improve our perceptual judgments of an object's properties. For instance, with respect to compliance, we exert pressure against a resisting force. The present work investigates ties between strategies for active control of the finger and resultant cues by which compliances may be discriminated. In particular, we employ elastic spheres that co-vary in compliance and radius, as these generate non-differentiable contact areas and are discriminable only in active touch with proprioceptive inputs. During human-subjects psychophysical experiments, we measure touch force, fingertip displacement, and joint kinematics. Two active touch paradigms are used, with and without a force constraint. First, in behaviorally-controlled situations that make force cues non-useful, the results indicate that participants can employ a force-matching strategy between the compliant objects and rely upon displacement-related cues to differentiate them. We show these cues are directly tied to a proprioception mechanism, specifically, the angle of the MCP joint. However, in the fully active paradigm, participants control displacements instead and discriminate via force-related cues. Similar to prior findings in passive touch, we find that force-related cues, likewise, are used in active touch for the optimal and efficient discrimination of compliant objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.