Objective-Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease.Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR Ϫ/Ϫ ) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results-LDLRϪ/Ϫ mice were fed chow, high-fat, high-carbohydrate (diabetogenic) diets without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers, and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation, and local inflammation were observed in intraabdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions-Obesity-induced
OBJECTIVEObesity is associated with monocyte-macrophage accumulation in adipose tissue. Previously, we showed that glucose-stimulated production by adipocytes of serum amyloid A (SAA), monocyte chemoattractant protein (MCP)-1, and hyaluronan (HA) facilitated monocyte accumulation. The current objective was to determine how the other major nutrient, free fatty acids (FFAs), affects these molecules and monocyte recruitment by adipocytes.RESEARCH DESIGN AND METHODSDifferentiated 3T3-L1, Simpson-Golabi-Behmel syndrome adipocytes, and mouse embryonic fibroblasts were exposed to various FFAs (250 μmol/l) in either 5 or 25 mmol/l (high) glucose for evaluation of SAA, MCP-1, and HA regulation in vitro.RESULTSSaturated fatty acids (SFAs) such as laurate, myristate, and palmitate increased cellular triglyceride accumulation, SAA, and MCP-1 expression; generated reactive oxygen species (ROS); and increased nuclear factor (NF) κB translocation in both 5 and 25 mmol/l glucose. Conversely, polyunsaturated fatty acids (PUFAs) such as arachidonate, eicosapentaenate, and docosahexaenate (DHA) decreased these events. Gene expression could be dissociated from triglyceride accumulation. Although excess glucose increased HA content, SFAs, oleate, and linoleate did not. Antioxidant treatment repressed glucose- and palmitate-stimulated ROS generation and NFκB translocation and decreased SAA and MCP-1 expression and monocyte chemotaxis. Silencing toll-like receptor-4 (TLR4) markedly reduced SAA and MCP-1 expression in response to palmitate but not glucose. DHA suppressed NFκB translocation stimulated by both excess glucose and palmitate via a peroxisome prolifterator–activated receptor (PPAR) γ–dependent pathway.CONCLUSIONSExcess glucose and SFAs regulate chemotactic factor expression by a mechanism that involves ROS generation, NFκB, and PPARγ, and which is repressed by PUFAs. Certain SFAs, but not excess glucose, trigger chemotactic factor expression via a TLR4-dependent pathway.
Background: Excess nutrients induce adipose inflammation. Results: Excess glucose and palmitate generate ROS via NOX4 by a mechanism that involves the PPP and translocation of NOX4 into LRs, rather than by mitochondrial oxidation. Conclusion: NOX4 activates monocyte chemotactic factor expression. Significance: Understanding the source of ROS generation may lead to the development of new therapeutic targets for adipose tissue inflammation.
Objectives-During inflammation, the serum amyloid A (SAA) content of HDL increases, whereas apolipoprotein A-I (apoA-I) and paraoxonase-1 (PON-1) decrease. It remains unclear whether SAA physically displaces apoA-I or if these changes derive from coordinated but inverse transcriptional regulation of the HDL apolipoprotein genes. Because cytokines stimulate the hepatic expression of inflammatory markers, we investigated their role in regulating SAA, apoA-I, and PON-1 expression. Methods and Results-A cytokine mixture (tumor necrosis factor [TNF]-␣, interleukin [IL]-1, and IL-6) simultaneously induced SAA and repressed apoA-I and PON-1 expression levels. These effects were partially inhibited in cells pretreated with either nuclear factor B (NF-B) inhibitors (pyrrolidine dithiocarbamate, SN50, and overexpression of super-repressor inhibitor B) or after exposure to the peroxisome proliferator-activated receptor-␣ (PPAR␣) ligands (WY-14643 and fenofibrate). Consistent with these findings, the basal level of SAA was increased, whereas apoA-I and PON-1 decreased in primary hepatocytes from PPAR␣-deficient mice as compared with wild-type mice. Moreover, neither WY-14643 nor fenofibrate had any effect on SAA, apoA-I, or PON-1 expression in the absence of PPAR␣. Conclusion-These
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.