Phenological shifts of plants and animals due to climate change can vary among regions and species, requiring study of local ecosystems to understand specific impacts. The reproductive timing of insectivorous songbirds in temperate forests is tightly synchronized with peak prey abundance, and thus they can be susceptible to such shift in timing. We aimed to investigate the effect of future climate change on the egg-laying phenology of the Varied Tit (Sittiparus various), which is common and widely distributed in South Korean forests. We developed the predictive model by investigating their egg-laying dates in response to spring temperatures along geographical gradients, and our model indicated that the tits lay eggs earlier when the average of daily mean and daily maximum temperatures rise. We predicted future shifts in egg-laying dates based on the most recent climate change model published by the Intergovernmental Panel on Climate Change (IPCC), under a scenario with no climate change mitigation and under a scenario with moderate mitigation. Under this outcome, this species might be unable to adapt to rapid climate change due to asynchrony with prey species during the reproductive period. If no mitigation is undertaken, our model predicts that egg-laying dates will be advanced by more than 10 days compared to the present in 83.58% of South Korea. However, even moderate mitigation will arrest this phenomenon and maintain present egg-laying dates. These results demonstrate the first quantitative assessment for the effect of warming temperatures on the phenological response of insectivorous songbirds in South Korea.
The endangered Black-faced Spoonbill (Platalea minor) strictly breeds in marine environments and is threatened by the rapid loss of coastal wetlands within its breeding range. Adults with chicks are thought to gradually switch feeding sites from freshwater wetlands to coastal mudflats as the chicks’ osmoregulatory system develops. We investigated age-dependent shifts in the diet of Black-faced Spoonbill chicks at four breeding colonies with varying freshwater habitat availability by examining stable isotopes (δ13C, δ15N) between the tip (grown at the age of 10 days) and middle (grown at the age of 22 days) portions of their primary feathers. The δ13C value of the middle portions was significantly higher than that of the tips, which suggested that the ratio of marine resources increased with the growth and development of chicks. A Bayesian isotope mixing model revealed that the diet proportion of marine prey in the early-chick rearing season was slightly higher than in the late-chick rearing season at three colonies in inshore areas, although this proportion was approximately 60% even in the early chick-rearing period. In contrast, isotopic values and reconstructed diet composition suggested that chicks in an offshore colony with limited freshwater wetlands relied more heavily on freshwater diets for both chick-rearing periods (>80%). Our results suggest that the shifts in feeding sites seen in previous studies might be related to the age-dependent dietary shift of chicks, highlighting the importance of freshwater wetlands for spoonbills on offshore islands without an inflow of freshwater in nearby intertidal mudflats. These findings emphasize the importance of freshwater prey and wetlands even for the endangered marine-breeding spoonbills, even though the negative impact of salt stress remains inconclusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.