This paper proposes an end-to-end deep reinforcement learning approach for mobile robot navigation with dynamic obstacles avoidance. Using experience collected in a simulation environment, a convolutional neural network (CNN) is trained to predict proper steering actions of a robot from its egocentric local occupancy maps, which accommodate various sensors and fusion algorithms. The trained neural network is then transferred and executed on a real-world mobile robot to guide its local path planning. The new approach is evaluated both qualitatively and quantitatively in simulation and realworld robot experiments. The results show that the map-based end-to-end navigation model is easy to be deployed to a robotic platform, robust to sensor noise and outperforms other existing DRL-based models in many indicators.
The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.
Necroptosis is a form of programmed necrosis that is mediated by signaling complexes containing the receptor-interacting protein 3 (RIP3) and RIP1 kinases. We show that RIP3 and its interaction with the herpes simplex virus type 1 (HSV-1) protein ICP6 triggers necroptosis in infected mouse cells and limits viral propagation in mice. ICP6 interacts with RIP1/RIP3 through its RHIM domain and forms dimers/oliogmers by its C-terminal R1 domain. These binding events result in RIP1-RIP3 hetero- and RIP3-RIP3 homo-interactions and subsequent necroptosis of HSV-1-infected mouse cells. However, ICP6 RHIM cannot trigger necroptosis and even inhibits TNF-induced necroptosis in human cells. As the RHIM domain in murine cytomegalovirus protein vIRA can inhibit necroptosis in both human and mouse cells, these data suggest that both viral and host RHIM sequences determine whether the virus-host RHIM interaction is pro- or anti-necroptotic and that some viruses may evolve to escape this restriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.