This paper analyses the electromagnetic resulted acoustic noise of an interior permanent magnet synchronous machine (IPMSM). The influences of electromagnetic nonlinearity, pulse-width-modulation (PWM) and motor frame on the acoustic noise are considered. A finite element model is used to extract the look up tables (LUTs) of flux linkage and air gap electromagnetic force distributions as functions of rotor positions and excitation currents. Based on the generated LUTs, an electrical dynamic model is used to simulate stator current and air gap electromagnetic force waveforms considering PWM. Simulated forces are fed to a lumped parameter mechanical model to predict the acoustic noise of the IPMSM in a wide operation range. In the end, a structural method and a PWM based method are proposed to reduce the noise level of the IPMSM. Simulation results show changing the frame thickness and adopting a different PWM method can effectively mitigate the noisy operating points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.