ABSTRACT:With the development of intelligent transportation, road's high precision information data has been widely applied in many fields. This paper proposes a concise and practical way to extract road marking information from point cloud data collected by mobile mapping system (MMS). The method contains three steps. Firstly, road surface is segmented through edge detection from scan lines. Then the intensity image is generated by inverse distance weighted (IDW) interpolation and the road marking is extracted by using adaptive threshold segmentation based on integral image without intensity calibration. Moreover, the noise is reduced by removing a small number of plaque pixels from binary image. Finally, point cloud mapped from binary image is clustered into marking objects according to Euclidean distance, and using a series of algorithms including template matching and feature attribute filtering for the classification of linear markings, arrow markings and guidelines. Through processing the point cloud data collected by RIEGL VUX-1 in case area, the results show that the F-score of marking extraction is 0.83, and the average classification rate is 0.9.
Automatic driving technology is becoming one of the main areas of development for future intelligent transportation systems. The high-precision map, which is an important supplement of the on-board sensors during shielding or limited observation distance, provides a priori information for high-precision positioning and path planning in automatic driving. The position and semantic information of the road markings, such as absolute coordinates of the solid lines and dashed lines, are the basic components of the high-precision map. In this paper, we study the automatic extraction and vectorization of road markings. Firstly, scan lines are extracted from the vehicle-borne laser point cloud data, and the pavement is extracted from scan lines according to the geometric mutation at the road boundary. On this basis, the pavement point clouds are transformed into raster images with a certain resolution by using the method of inverse distance weighted interpolation. An adaptive threshold segmentation algorithm is used to convert raster images into binary images. Followed by the adaptive threshold segmentation is the Euclidean clustering method, which is used to extract road markings point clouds from the binary image. Solid lines are detected by feature attribute filtering. All of the solid lines and guidelines in the sample data are correctly identified. The deep learning network framework PointNet++ is used for semantic recognition of the remaining road markings, including dashed lines, guidelines and arrows. Finally, the vectorization of the identified solid lines and dashed lines is carried out based on a line segmentation self-growth algorithm. The vectorization of the identified guidelines is carried out according to an alpha shape algorithm. Point cloud data from four experimental areas are used for road marking extraction and identification. The F-scores of the identification of dashed lines, guidelines, straight arrows and right turn arrows are 0.97, 0.66, 0.84 and 1, respectively.
Abstract. At present, automatic driving technology has become one of the development direction of the future intelligent transportation system. The high high-precision map, which is an important supplement of the on on-board sensors under the condition of shielding or the restriction of observation distance, provides a priori information for high high-precision positioning and path planning of the automatic driving with the level of L3 and above. The position and semantic information of the road markings, such as the absolute coordinates of th e solid line and the bro ken line, are the basic components of the high high-precision map. At present, point cloud data are still one of the most important data source of the high high-precision map. So, how to get road markings information from original point clouds automatically deserve study. In this paper, point cloud is sliced by the mileage of the road, then each slice is projected onto respective vertical section section. Random Sample Consensus (RANSAC) algorithm is applied to establish road surface buffer area . Finally, moving window filtering is used to extract road surface point cloud from road surface buffer area area. On this basis, the road surface point cloud image is transformed into raster image with a certain resolution by using the method of inverse distance weighted interpolation , and the grid image is converted into binary image by using the method of adaptive threshold segmentation based on the integral graph. Then the method of the Euclidean clustering is used to extract the road markings point cloud from the binary image. Characteristic attribute detection is applied to recognize solid line marking from all clusters. Deep learning network framework pointnet++ is applied to recognize remain road markings including guideline, broken line, straight arrow, and right turn arrow.
This study evaluated the accuracy and reliability of Voice Note Taking, a technology designed to transcribe spoken language and support note-taking. The experiment analyzed the transcription accuracy and word definition selection feature of Voice Note Taking using a series of audio files featuring individuals speaking in English in different settings. The results showed that Voice Note Taking is reliable and accurate, with an overall transcription accuracy rate of 87.81%. However, the study identified room for improvement, particularly in improving accuracy in noisy environments and developing more sophisticated algorithms for word definition selection. Future research could explore the integration of advanced natural language processing techniques to improve the accuracy of word definition selection, including leveraging machine learning algorithms to recognize the specific context and meaning of words. Several previous studies have shown the potential of mobile note-taking apps to enhance student achievement, satisfaction, and accessibility, suggesting further research in this area. Overall, this study highlights the strengths and limitations of Voice Note Taking and provides insight into potential areas for future development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.