Hormesis, a phenomenon whereby exposure to high levels of stressors is inhibitory but low (mild, sublethal and subtoxic) doses are stimulatory, challenges decision-making in the management of cancer, neurodegenerative diseases, nutrition and ecotoxicology. In the latter, increasing amounts of a pesticide may lead to upsurges rather than declines of pests, ecological paradoxes that are difficult to predict. Using a novel re-formulation of the Ricker population equation, we show how interactions between intervention strengths and dose timings, dose–response functions and intrinsic factors can model such paradoxes and hormesis. A model with three critical parameters revealed hormetic biphasic dose and dose timing responses, either in a J-shape or an inverted U-shape, yielding a homeostatic change or a catastrophic shift and hormetic effects in many parameter regions. Such effects were enhanced by repeated pulses of low-level stimulations within one generation at different dose timings, thereby reducing threshold levels, maximum responses and inhibition. The model provides insights into the complex dynamics of such systems and a methodology for improved experimental design and analysis, with wide-reaching implications for understanding hormetic effects in ecology and in medical and veterinary treatment decision-making. We hypothesized that the dynamics of a discrete generation pest control system can be determined by various three-parameter spaces, some of which reveal the conditions for occurrence of hormesis, and confirmed this by fitting our model to both hormetic data from the literature and to a non-hormetic dataset on pesticidal control of mirid bugs in cotton.
The switched discrete host-parasitoid model concerning integrated pest management (IPM) has been proposed in the present work, and the economic threshold (ET) is chosen to guide the switches. That is, if the density of host (pest) population increases and exceeds the ET, then the biological and chemical tactics are applied together. Those multiple control measures are suspended once the density of host falls below the ET. Firstly, the existence and stability of several types of equilibria of switched system have been discussed briefly, and two- or three-parameter bifurcation diagrams reveal the regions of different types of equilibria including regular and virtual equilibria. Secondly, numerical bifurcation analyses show that the switched discrete system may have very complex dynamics including the co-existence of multiple attractors and switched-like behavior among attractors. Finally, we address how the key parameters and initial values of both host and parasitoid populations affect the host outbreaks, switching frequencies or mean switching frequency, and consequently the relative biological implications with respect to pest control are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.