Crossbar arrays with non-volatile memory have recently become very popular for DNN acceleration due to their In-Memory-Computing property and low power requirements which makes them suitable for deployment on edge. Quantized neural network (QNNs) enables us to run inference with limited hardware resource and power availability and can easily be ported on smaller devices. On the other hand, to make edge devices self sustainable a great deal of promise has been shown by energy harvesting scenarios. However, the power supplied by the energy harvesting sources is not constant which becomes problematic as a fixed trained neural network requires a constant amount of power to run inference. This work addresses this issue by tuning network precision at layer granularity for variable power availability predicted for different energy harvesting scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.