Microcystins (MCs) produced by cyanobacteria pose a serious threat to public health. Intelligence on MCs distributions in freshwater is therefore critical for environmental agencies, water authorities, and public health organizations. We developed and validated an empirical model to quantify MCs in Lake Taihu during cyanobacterial bloom periods using the atmospherically Rayleigh-corrected moderate resolution imaging spectroradiometer (MODIS-Aqua) (Rrc) products and in situ data by means of chlorophyll a concentrations (Chla). First, robust relationships were constructed between MCs and Chla (r = 0.91; p < 0.001; t-test) and between Chla and a spectral index derived from Rrc (r = -0.86; p < 0.05; t-test). Then, a regional algorithm to analyze MCs in Lake Taihu was constructed by combining the two relationships. The model was validated and then applied to an 11-year series of MODIS-Aqua data to investigate the spatial and temporal distributions of MCs. MCs in the lake were markedly variable both spatially and temporally. Cyanobacterial bloom scums, temperature, wind, and light conditions probably affected the temporal and spatial distribution of MCs in Lake Taihu. The findings demonstrate that remote sensing reconnaissance in conjunction with in situ monitoring can greatly aid MCs assessment in freshwater.
Light scattering properties in such a highly turbid productive lake as Lake Taihu in China were examined through 118 samples collected during three cruises in November 2006, March 2007, and November 2007. The particulate scattering and backscattering coefficients were observed using WETLabs AC-S and ECO-BB9. A power model with a spectral exponent of -0.729 was used to simulate the particulate scattering coefficient (b(p)) spectra. It has a better performance than the linear model. Scattering parameters are more closely related to inorganic suspended matter (ISM) concentration than to other water components, such as total suspended matter (TSM), organic suspended matter (OSM), and chlorophyll a (Chla). This indicates that ISM dominates the scattering signal in the lake. Three discrepancies with oceanic/coastal waters are observed: (a) the backscattering ratio (b (bp)) decreases with an increase in the ISM concentration because of a highly strong contribution by ISM to b(p); (b) the mass-specific scattering coefficient (b(p) (m)) exhibits a wider range of variability than that reported in previous studies, which can be attributed to considerable variation in the OSM and ISM distributions; (c) the particle size distribution slope (xi) is mostly larger than 4.0 in Lake Taihu, whereas it is usually within 3.5-4.0 for marine particles. In addition, the bulk refractive index (n (p)) calculated according to the Twardowski et al. model [J. Geophys. Res. 106, 14129 (2001)JGREA20148-0227] indicates that some stations (n (p)<1.07) can be regarded as organic-particle dominant. Other stations with high ISM concentrations have a very small n (p) value mostly within 1.10-1.17. Overall, the knowledge on the scattering properties gained in this study broadens our understanding of water optics in highly turbid productive water columns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.