Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its earlier detection for optimal disease management. A metabolomics based approach provides potential for noninvasive identification of biomarkers of colorectal carcinogenesis, as well as dissection of molecular pathways of pathophysiological conditions. Here, proton nuclear magnetic resonance spectroscopy (1HNMR) -based metabolomic approach was used to profile fecal metabolites of 68 CRC patients (stage I/II=20; stage III=25 and stage IV=23) and 32 healthy controls (HC). Pattern recognition through principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied on 1H-NMR processed data for dimension reduction. OPLS-DA revealed that each stage of CRC could be clearly distinguished from HC based on their metabolomic profiles. Successive analyses identified distinct disturbances to fecal metabolites of CRC patients at various stages, compared with those in cancer free controls, including reduced levels of acetate, butyrate, propionate, glucose, glutamine, and elevated quantities of succinate, proline, alanine, dimethylglycine, valine, glutamate, leucine, isoleucine and lactate. These altered fecal metabolites potentially involved in the disruption of normal bacterial ecology, malabsorption of nutrients, increased glycolysis and glutaminolysis. Our findings revealed that the fecal metabolic profiles of healthy controls can be distinguished from CRC patients, even in the early stage (stage I/II), highlighting the potential utility of NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in CRC patients.
2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2018.
Better early detection methods are needed to improve the outcomes of patients with colorectal cancer (CRC). Proton nuclear magnetic resonance spectroscopy (1H-NMR), a potential non-invasive early tumor detection method, was used to profile urine metabolites from 55 CRC patients and 40 healthy controls (HCs). Pattern recognition through orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to 1H-NMR processed data. Model specificity was confirmed by comparison with esophageal cancers (EC, n=18). Unique metabolomic profiles distinguished all CRC stages from HC urine samples. A total of 16 potential biomarker metabolites were identified in stage I/II CRC, indicating amino acid metabolism, glycolysis, tricarboxylic acid (TCA) cycle, urea cycle, choline metabolism, and gut microflora metabolism pathway disruptions. Metabolite profiles from early stage CRC and EC patients were also clearly distinguishable, suggesting that upper and lower gastrointestinal cancers have different metabolomic profiles. Our study assessed important metabolomic variations in CRC patient urine samples, provided information complementary to that collected from other biofluid-based metabolomics analyses, and elucidated potential underlying metabolic mechanisms driving CRC. Our results support the utility of NMR-based urinary metabolomics fingerprinting in early diagnosis of CRC.
This study aimed to compare the post-modified radical mastectomy radiotherapy (PMRMRT) for left-sided breast cancer utilizing 3-dimensional conformal radiotherapy with field-in-field technique (3DCRT-FinF), 5-field intensity-modulated radiation therapy (5F-IMRT) and 2- partial arc volumetric modulated arc therapy (2P-VMAT). We created the 3 different PMRMRT plans for each of the ten consecutive patients. We performed Kruskal-Wallis analysis of variance (ANOVA) followed by the Dunn’s-type multiple comparisons to establish a hierarchy in terms of plan quality and dosimetric benefits. P < 0.05 was considered statistically significant. Both 5F-IMRT and 2P-VMAT plans exhibited similar PTV coverage (V95%), hotspot areas (V110%) and conformity (all p > 0.05), and significantly higher PTV coverage compared with 3DCRT-FinF (both p < 0.001). In addition, 5F-IMRT plans provided significantly less heart and left lung radiation exposure than 2P-VMAT (all p < 0.05). The 3DCRT-FinF plans with accurately estimated CTV displacement exhibited enhanced target coverage but worse organs at risk (OARs) sparing compared with those plans with underestimated displacements. Our results indicate that 5F-IMRT has dosimetrical advantages compared with the other two techniques in PMRMRT for left-sided breast cancer given its optimal balance between PTV coverage and OAR sparing (especially heart sparing). Individually quantifying and minimizing CTV displacement can significantly improve dosage distribution.
BackgroundRecent impressive advances in cancer immunotherapy have been largely derived from cellular immunity. The role of humoral immunity in carcinogenesis has been less understood. Based on our previous observations we hypothesize that an immunoglobulin subtype IgG4 plays an essential role in cancer immune evasion.MethodsThe distribution, abundance, actions, properties and possible mechanisms of IgG4 were investigated with human cancer samples and animal tumor models with an extensive array of techniques both in vitro and in vivo.ResultsIn a cohort of patients with esophageal cancer we found that IgG4-containing B lymphocytes and IgG4 concentration were significantly increased in cancer tissue and IgG4 concentrations increased in serum of patients with cancer. Both were positively related to increased cancer malignancy and poor prognoses, that is, more IgG4 appeared to associate with more aggressive cancer growth. We further found that IgG4, regardless of its antigen specificity, inhibited the classic immune reactions of antibody-dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement-dependent cytotoxicity against cancer cells in vitro, and these effects were obtained through its Fc fragment reacting to the Fc fragments of cancer-specific IgG1 that has been bound to cancer antigens. We also found that IgG4 competed with IgG1 in reacting to Fc receptors of immune effector cells. Therefore, locally increased IgG4 in cancer microenvironment should inhibit antibody-mediated anticancer responses and help cancer to evade local immune attack and indirectly promote cancer growth. This hypothesis was verified in three different immune potent mouse models. We found that local application of IgG4 significantly accelerated growth of inoculated breast and colorectal cancers and carcinogen-induced skin papilloma. We also tested the antibody drug for cancer immunotherapy nivolumab, which was IgG4 in nature with a stabilizing S228P mutation, and found that it significantly promoted cancer growth in mice. This may provide an explanation to the newly appeared hyperprogressive disease sometimes associated with cancer immunotherapy.ConclusionThere appears to be a previously unrecognized immune evasion mechanism with IgG4 playing an essential role in cancer microenvironment with implications in cancer diagnosis and immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.