The occurrence of self-excited noise felt as squealing noise is a critical issue for an electrohydraulic servovalve that is an essential part of the hydraulic servocontrol system. Aiming to highlight the root causes of the self-excited noise, the effect of oil viscosity on the noise production inside a two-stage servovalve is investigated in this paper. The pressure pulsations' characteristics and noise characteristics are studied at three different oil viscosities experimentally by focusing on the flapper-nozzle pilot stage of a two-stage servovalve. The cavitation-induced and vortex-induced pressure pulsations' characteristics at upstream and downstream of the turbulent jet flow path are extracted and analyzed numerically by comparing with the experimental measured pressure pulsations and noise characteristics. The numerical simulations of transient cavitation shedding phenomenon are also validated by the experimental cavitation observations at different oil viscosities. Both numerical simulations and experimental cavitation observations explain that cavitation shedding phenomenon is intensified with the decreasing of oil viscosity. The small-scale vortex propagation with the characteristic of generating, growing, moving, and merging is numerically simulated. Thus, this study reveals that the oil viscosity affects the transient distribution of cavitation and small-scale vortex, which, in turn, enhances the pressure pulsation and noise. The noise characteristics achieve a good agreement with pressure pulsation characteristics showing that the squealing noise appears accompanied by the flow field resonance in the flapper-nozzle. The flow-acoustic resonance and resulting squealing noise possibly occurs when the amplitude of the pressure pulsations near the flapper is large enough inside a two-stage servovalve.
Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400-14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.
A series of sloshing model tests for various viscous liquids were carried out and the effects of liquid viscosity on sloshing are investigated quantitatively in this paper. The experimental results show that the liquid viscosity has an important effect on sloshing pressure, which is the mean value of those peak pressures from several consecutive periods. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and the dissipation effect is more remarkable, especially when liquid viscosity becomes higher. As a result of viscous damping effect, the rising time of impact pressure is longer in higher viscosity liquid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.