For years, bioengineers and orthopaedic surgeons have applied the principles of mechanics to gain valuable information about the complex function of the anterior cruciate ligament (ACL). The results of these investigations have provided scientific data for surgeons to improve methods of ACL reconstruction and postoperative rehabilitation. This review paper will present specific examples of how the field of biomechanics has impacted the evolution of ACL research. The anatomy and biomechanics of the ACL as well as the discovery of new tools in ACL-related biomechanical study are first introduced. Some important factors affecting the surgical outcome of ACL reconstruction, including graft selection, tunnel placement, initial graft tension, graft fixation, graft tunnel motion and healing, are then discussed. The scientific basis for the new surgical procedure, i.e., anatomic double bundle ACL reconstruction, designed to regain rotatory stability of the knee, is presented. To conclude, the future role of biomechanics in gaining valuable in-vivo data that can further advance the understanding of the ACL and ACL graft function in order to improve the patient outcome following ACL reconstruction is suggested.
The porcine small intestine submucosa, an extracellular matrix–derived bioscaffold (ECM-SIS), has been successfully used to enhance the healing of ligaments and tendons. Since the collagen fibers of ECM-SIS have an orientation of ± 30°, its application in improving the healing of the parallel-fibered ligament and tendon may not be optimal. Therefore, the objective was to improve the collagen fiber alignment of ECM-SIS in vitro with fibroblast seeding and cyclic stretch. The hypothesis was that with the synergistic effects of cell seeding and mechanical stimuli, the collagen fibers in the ECM-SIS can be remodeled and aligned, making it an improved bioscaffold with enhanced conductive properties. Three experimental groups were established: group I (n = 14), ECM-SIS was seeded with fibroblasts and cyclically stretched; group II (n = 13), ECM-SIS was seeded with fibroblasts but not cyclically stretched; and group III (n = 8), ECM-SIS was not seeded with fibroblasts but cyclically stretched. After 5 days’ experiments, the scaffolds from all the three groups (n = 9 for group I; n = 8 for groups II and III) were processed for quantification of the collagen fiber orientation with a small-angle light scattering (SALS) system. For groups I and II, in which the scaffolds were seeded with fibroblasts, the cell morphology and orientation and newly produced collagen fibrils were examined with confocal fluorescent microscopy (n =3/group) and transmission electronic microscopy (n =2/group). The results revealed that the collagen fiber orientation in group I was more aligned closer to the stretching direction when compared to the other two groups. The mean angle decreased from 25.3° to 7.1° ( p < 0.05), and the associated angular dispersion was also reduced (37.4° vs. 18.5°, p < 0.05). In contrast, groups II and III demonstrated minimal changes. The cells in group I were more aligned in the stretching direction than those in group II. Newly produced collagen fibrils could be observed along the cells in both groups I and II. This study demonstrated that a combination of fibroblast seeding and cyclic stretch could remodel and align the collagen fiber orientation in ECM-SIS bio-scaffolds. The better-aligned ECM-SIS has the prospect of eliciting improved effects on enhancing the healing of ligaments and tendons.
ABSTRACT:The two functional bundles of the anterior cruciate ligament (ACL), namely, the anteromedial (AM) and posterolateral (PL) bundles, must work in concert to control displacement of the tibia relative to the femur for complex motions. Thus, the replacement graft(s) for a torn ACL should possess similar tension patterns. The objective of the study was to examine whether a double-bundle ACL reconstruction with the semitendinosus-gracilis autografts could replicate the tension patterns of those for the intact ACL under controlled in vitro loading conditions. By means of a robotic/universal force moment sensor (UFS) testing system, the in situ force vectors (both magnitude and direction) for the AM and PL bundles of the ACL, as well as their respective replacement grafts, were determined and compared on nine human cadaveric knees. It was found that double-bundle ACL reconstruction could closely replicate the in situ force vectors. Under a 134-N anterior tibial load, the resultant force vectors for the intact ACL and the reconstructed ACL had a difference of 5 to 11 N (p > 0.05) in magnitude and 1 to 138 (p > 0.05) in direction. Whereas, under combined rotatory loads of 10-N-m valgus and 5-N-m internal tibial torques, the corresponding differences were 10 to 16 N and 48 to 118, respectively. Again, there were no statistically significant differences except at 308 of flexion where the force vector for the AM graft had a 158 (p < 0.05) lower elevation angle than did the AM bundle. The anterior cruciate ligament (ACL) is one of the major stabilizers of the knee joint, providing restraint to anterior tibial translation as well as to varus-valgus and axial tibial rotations. It has an irregular cross-sectional shape along its length and can be anatomically divided into two functional bundles, namely, the anteromedial (AM) and the posterolateral (PL) bundles, 1,2 each playing different roles in stabilizing the knee joint. When the knee is extended, both bundles are taut. As the knee is flexed, the AM bundle further tightens and the PL bundle becomes relatively lax. Biomechanical studies have further revealed that under an applied anterior tibial load, the PL bundle shares the load with the AM bundle near full knee extension; whereas, the AM bundle carries more load as knee flexion angle increases. 3As a major knee stabilizer, the ACL is also the most frequently injured ligament during sports activities, 4,5 such as basketball, skiing, soccer, and football. A torn ACL may result in knee instability if left untreated. Due to its poor healing capability, surgeons often perform ACL reconstruction using replacement tissue grafts. Recently, the literature has shown that under controlled in vitro tests simulating clinical exams (e.g., anterior tibial drawer/Lachman test and pivot shift test), these procedures which were designed chiefly to replace only the AM bundle can successfully limit anterior tibial translation under anterior tibial load, but become insufficient under rotator loads. 6,7 These findings have contributed t...
The anterior cruciate ligament (ACL) is commonly injured. The stress distribution in the ACL is the key for understanding its function and injury mechanism, as well as for developing optimal surgical reconstruction protocols. In this study, a three-dimensional subject-specific finite element model of human ACL was developed. Bony geometries were reconstructed from CT scan images, while the geometry of the ACL and the orientation of its fiber bundles were measured via a mechanical digitizer. A transversely isotropic, hyperelastic, and nearly incompressible constitutive model was implemented to describe the mechanical properties of the ACL. A 134N anterior tibial load were applied to a cadaveric knee specimen at full extension, 30 degrees , and 60 degrees of flexion by a 6-DOF Robotic/Universal Force-moment Sensor (UFS) system, which was also used to measure the ACL resultant force. Knee kinematics was collected by digitizing two registration blocks attached to the femur and the tibia, respectively, and was input into the FE model as boundary conditions. The resultant force of the ACL calculated by the FE model was comparable to the experimental data, with the error within 10%, thus validated the model. The FE results showed that the average stress in the ACL was between the range 4.7-5.0MPa, with a peak stress between the range 9.8-10.9MPa, which shifted from the posterior lateral (PL) bundle to the anterior medial (AM) bundle as the knee flexed.
The anterior cruciate ligament (ACL) has irregular geometry and spirally oriented fiber bundle organization, which are closely related to its physiological function. In previous finite element (FE) models, however, these two features are neglected due to the difficulty of obtaining its complex geometry and spiral fiber bundle orientation. Based on a previously developed and validated FE model, this study performed parametric studies to evaluate the effects of geometry and fiber bundle orientation on the FE modeling of the ACL. To evaluate the effect of the geometry, two models were compared: 1) with realistic ACL geometry obtained by using digitizer; 2) with ACL geometry reconstructed by directly connecting the femur and tibia insertion sites as commonly used in previous studies. To evaluate the effect of fiber bundle orientation, another two models were compared: 1) with realistic fiber bundle orientation obtained by using digitizer (alpha=38 degrees ); 2) with unrealistic fiber bundle orientation (alpha=0 degrees ). The same kinematics obtained by a Robotic/Universal Force-moment Sensor (UFS) system was input into the models as boundary conditions. The resultant forces calculated by the models were compared to the experimental data. The model with unrealistic geometry had a 40% higher ACL resultant force compared to the experimental data, while the model with the realistic ACL geometry well predicted the ACL resultant force, with an error less than 10%. When evaluating the effect of fiber bundle orientation, the model with unrealistic fiber bundle orientation predicted similar ACL resultant forces and stress distribution as the model with realistic fiber bundle orientation. The results revealed that ACL geometry has a significant effect on the FE model while fiber orientation does not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.