In the task of image instance segmentation, semi-supervised instance segmentation algorithms have received constant research attention over recent years. Among these algorithms, algorithms based on transfer learning are better than algorithms based on pseudo-label generation in terms of segmentation performance, but they can not make full use of the relevant characteristics of source tasks. To improve the accuracy of these algorithms, this work proposes a semi-supervised instance segmentation model AFT-Mask (attention-based feature transfer Mask R-CNN) based on category attention. The AFT-Mask model takes the result of object-classification prediction as “attention” to improve the performance of the feature-transfer module. In detail, we designed a migration-optimization module for connecting feature migration and classification prediction to enhance segmentation-prediction accuracy. To verify the validity of the AFT-Mask model, experiments were conducted on two types of datasets. Experimental results show that the AFT-Mask model can achieve effective knowledge transfer and improve the performance of the benchmark model on semi-supervised instance segmentation.
The access control (AC) system in an IoT (Internet of Things) context ensures that only authorized entities have access to specific devices and that the authorization procedure is based on pre-established rules. Recently, blockchain-based AC systems have gained attention within research as a potential solution to the single point of failure issue that centralized architectures may bring. Moreover, zero-knowledge proof (ZKP) technology is included in blockchain-based AC systems to address the issue of sensitive data leaking. However, current solutions have two problems: (1) systems built by these works are not adaptive to high-traffic IoT environments because of low transactions per second (TPS) and high latency; (2) these works cannot fully guarantee that all user behaviors are honest. In this work, we propose a blockchain-based AC system with zero-knowledge rollups to address the aforementioned issues. Our proposed system implements zero-knowledge rollups (ZK-rollups) of access control, where different AC authorization requests can be grouped into the same batch to generate a uniform ZKP, which is designed specifically to guarantee that participants can be trusted. In low-traffic environments, sufficient experiments show that the proposed system has the least AC authorization time cost compared to existing works. In high-traffic environments, we further prove that based on the ZK-rollups optimization, the proposed system can reduce the authorization time overhead by 86%. Furthermore, the security analysis is presented to show the system’s ability to prevent malicious behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.