Stride length and walking distance estimation are becoming a key aspect of many applications. One of the methods of enhancing the accuracy of pedestrian dead reckoning is to accurately estimate the stride length of pedestrians. Existing stride length estimation (SLE) algorithms present good performance in the cases of walking at normal speed and the fixed smartphone mode (handheld). The mode represents a specific state of the carried smartphone. The error of existing SLE algorithms increases in complex scenes with many mode changes. Considering that stride length estimation is very sensitive to smartphone modes, this paper focused on combining smartphone mode recognition and stride length estimation to provide an accurate walking distance estimation. We combined multiple classification models to recognize five smartphone modes (calling, handheld, pocket, armband, swing). In addition to using a combination of time-domain and frequency-domain features of smartphone built-in accelerometers and gyroscopes during the stride interval, we constructed higher-order features based on the acknowledged studies (Kim, Scarlett, and Weinberg) to model stride length using the regression model of machine learning. In the offline phase, we trained the corresponding stride length estimation model for each mode. In the online prediction stage, we called the corresponding stride length estimation model according to the smartphone mode of a pedestrian. To train and evaluate the performance of our SLE, a dataset with smartphone mode, actual stride length, and total walking distance were collected. We conducted extensive and elaborate experiments to verify the performance of the proposed algorithm and compare it with the state-of-the-art SLE algorithms. Experimental results demonstrated that the proposed walking distance estimation method achieved significant accuracy improvement over existing individual approaches when a pedestrian was walking in both indoor and outdoor complex environments with multiple mode changes.
Accurate heading estimation is the foundation of numerous applications, including augmented reality, pedestrian dead reckoning, and human-computer interactions. While magnetometer is a key source of heading information, the poor accuracy of consumer-grade hardware coupled with the pervasive magnetic disturbances makes accurate heading estimation a challenging issue. Heading error is one of the main error sources of pedestrian dead reckoning. To reduce the heading error and enhance robustness, we proposed a novel heading estimation method based on Spatial Transformer Networks (STNs) and Long Short-Term Memory (LSTM), termed DeepHeading, which uses sensors embedded in a smartphone without any historical training data or dedicated infrastructure. We automatically annotate heading data based on map matching, and augment heading data based on device attitude. We leverage the STNs to align the device coordinate system and the navigation coordinate system, allow an unconstrained use of smartphones. Based on the characteristics of pedestrian heading continuity, we designed a hierarchical LSTM-basedSeq2Seq model to estimate the walking heading of the pedestrian. We conducted well-designed experiments to evaluate the performance of deepheading and compared it with the state-of-the-art heading estimation algorithms. The experimental results on real-world demonstrated that deepheading outperformed the compared heading estimation algorithms and achieved promising estimation accuracy with a median heading error of 4.52 • , mean heading error of 6.07 • and heading error of 9.18 • at the confidence of 80% when a pedestrian is walking in indoor environments with magnetic field disturbances. The proposed method is high-efficiency and easy to integrate with various mobile applications. INDEX TERMS Indoor positioning, heading estimation, pedestrian dead reckoning, deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.