In this paper, we present a method of kernel optimization by maximizing a measure of class separability in the empirical feature space, an Euclidean space in which the training data are embedded in such a way that the geometrical structure of the data in the feature space is preserved. Employing a data-dependent kernel, we derive an effective kernel optimization algorithm that maximizes the class separability of the data in the empirical feature space. It is shown that there exists a close relationship between the class separability measure introduced here and the alignment measure defined recently by Cristianini. Extensive simulations are carried out which show that the optimized kernel is more adaptive to the input data, and leads to a substantial, sometimes significant, improvement in the performance of various data classification algorithms.
ObjectiveTo develop a deep convolutional neural network (DCNN) that can automatically detect laryngeal cancer (LCA) in laryngoscopic images.MethodsA DCNN-based diagnostic system was constructed and trained using 13,721 laryngoscopic images of LCA, precancerous laryngeal lesions (PRELCA), benign laryngeal tumors (BLT) and normal tissues (NORM) from 2 tertiary hospitals in China, including 2293 from 206 LCA subjects, 1807 from 203 PRELCA subjects, 6448 from 774 BLT subjects and 3191 from 633 NORM subjects. An independent test set of 1176 laryngoscopic images from other 3 tertiary hospitals in China, including 132 from 44 LCA subjects, 129 from 43 PRELCA subjects, 504 from 168 BLT subjects and 411 from 137 NORM subjects, was applied to the constructed DCNN to evaluate its performance against experienced endoscopists.ResultsThe DCCN achieved a sensitivity of 0.731, a specificity of 0.922, an AUC of 0.922, and the overall accuracy of 0.867 for detecting LCA and PRELCA among all lesions and normal tissues. When compared to human experts in an independent test set, the DCCN’ s performance on detection of LCA and PRELCA achieved a sensitivity of 0.720, a specificity of 0.948, an AUC of 0.953, and the overall accuracy of 0.897, which was comparable to that of an experienced human expert with 10–20 years of work experience. Moreover, the overall accuracy of DCNN for detection of LCA was 0.773, which was also comparable to that of an experienced human expert with 10–20 years of work experience and exceeded the experts with less than 10 years of work experience.ConclusionsThe DCNN has high sensitivity and specificity for automated detection of LCA and PRELCA from BLT and NORM in laryngoscopic images. This novel and effective approach facilitates earlier diagnosis of early LCA, resulting in improved clinical outcomes and reducing the burden of endoscopists.
In genetic studies, many interesting traits, including growth curves and skeletal shape, have temporal or spatial structure. They are better treated as curves or function-valued traits. Identification of genetic loci contributing to such traits is facilitated by specialized methods that explicitly address the function-valued nature of the data. Current methods for mapping function-valued traits are mostly likelihood-based, requiring specification of the distribution and error structure. However, such specification is difficult or impractical in many scenarios. We propose a general functional regression approach based on estimating equations that is robust to misspecification of the covariance structure. Estimation is based on a two-step least-squares algorithm, which is fast and applicable even when the number of time points exceeds the number of samples. It is also flexible due to a general linear functional model; changing the number of covariates does not necessitate a new set of formulas and programs. In addition, many meaningful extensions are straightforward. For example, we can accommodate incomplete genotype data, and the algorithm can be trivially parallelized. The framework is an attractive alternative to likelihood-based methods when the covariance structure of the data is not known. It provides a good compromise between model simplicity, statistical efficiency, and computational speed. We illustrate our method and its advantages using circadian mouse behavioral data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.