In this paper, we present a method of kernel optimization by maximizing a measure of class separability in the empirical feature space, an Euclidean space in which the training data are embedded in such a way that the geometrical structure of the data in the feature space is preserved. Employing a data-dependent kernel, we derive an effective kernel optimization algorithm that maximizes the class separability of the data in the empirical feature space. It is shown that there exists a close relationship between the class separability measure introduced here and the alignment measure defined recently by Cristianini. Extensive simulations are carried out which show that the optimized kernel is more adaptive to the input data, and leads to a substantial, sometimes significant, improvement in the performance of various data classification algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.