Our objective was to explore the effects of miR-92a and miR-126 on myocardial apoptosis in mouse ischemia-reperfusion model and further investigate the underlying mechanisms. Eighteen Kunming mice were selected and randomly divided into sham operation group and ischemia-reperfusion group with nine mice in each group. Cardiac muscle tissue was stained with Evans blue to confirm myocardial infarction and ischemia. Annexin V/PI double staining was used to detect the apoptotic rate of myocardial cells, and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) was used to detect the number of apoptotic cells; Western blot was used to detect expression of Caspase 3 to evaluate the apoptosis of mouse myocardial cells; qRT-PCR was used to detect expression of miR-92a and miR-126 in mouse myocardium, and Western blot was used to detect expression of HSP70 in two groups. Evans blue staining results showed that there was a large area of ischemia in myocardium of ischemia-reperfusion mice with marked infarction, suggesting successful establishment of the model. In sham operation group, myocardial cells were mostly normal cells. Annexin V/PI double staining of flow cytometry result showed that the apoptotic rate was 5.9 % in sham operation group and 37.0 % in ischemia-reperfusion group, respectively. Apoptosis detection results showed that apoptotic index (AI) of myocardial cells in ischemia-reperfusion mice was significantly higher than in sham operation group. In addition, qRT-PCR results showed that miR-92a expression in ischemia-reperfusion group was significantly higher than in sham operation group (F = 32.302, P = 0.000), and miR-126 expression in ischemia-reperfusion group was significantly lower than in sham operation group (F = 41.125, P = 0.000). Moreover, HSP70 detected by Western blot showed that HSP expression in ischemia-reperfusion group was significantly lower than in sham operation group. The change of miR-92a was in accordance with AI of myocardial cells. However, the change of miR-126 is in contrary with AI of myocardial cells, which may be related to the HSP70 expression in myocardial cells.
ObjectiveTo evaluate the prognostic value of baseline red cell distribution width (RDW) in patients with coronary artery diseases (CADs) undergoing percutaneous coronary intervention (PCI) by conducting a meta-analysis.DesignSystematic review and meta-analysis.Data sourcePubMed, Embase, Wanfang, CNKI and VIP databases were searched from their inceptions to 19 June 2019.Eligible criteriaStudies investigating the value of baseline RDW for predicting all-cause mortality, cardiovascular mortality and major adverse cardiac events (MACEs) in patients with CAD undergoing PCI were included.Data extraction and synthesisTwo authors independently extracted the data and evaluated the methodological quality using the Newcastle–Ottawa Scale. STATA V.12.0 software was applied to produce the forest plots using a random-effect model.ResultsTwelve studies (13 articles) involving 17 113 patients were included and analysed. Comparison between the highest and lowest RDW category indicated that the pooled risk ratio (RR) was 1.77 (95% CI 1.32 to 2.37) for all-cause mortality, 1.70 (95% CI 1.25 to 2.32) for cardiovascular mortality and 1.62 (95% CI 1.21 to 2.18) for MACEs. The predictive effect of elevated RDW for all-cause mortality was stronger in the subgroup of patients without anaemia (RR 4.59; 95% CI 3.07 to 6.86) than with anaemia.ConclusionsThis meta-analysis indicated that elevated RDW was associated with higher risk of mortality and adverse cardiac events in patients with CAD undergoing PCI. The value of elevated RDW for predicting all-cause mortality appears to be stronger in patients without anaemia. RDW may be served as a promising prognostic biomarker in patients undergoing PCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.